首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3‐carbamoyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl,3‐methoxycarbonyl‐2,2,5,5‐tetramethy pyrolidine‐1‐oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser‐enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm . The proton spin–lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3–5 mm . The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g‐factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice.  相似文献   

3.
Dynamic nuclear polarization (DNP) experiments in rotating solids have been performed for the first time using biradicals rather than monomeric paramagnetic centers as polarizing agents. Specifically, two TEMPO radicals were tethered with a poly(ethylene glycol) chain of variable length where the number of glycol units was 2, 3, or 4. NMR experiments show that the signal observed in DNP experiments is approximately inversely proportional to the length of the chain. Thus, the shorter chain with larger electron dipolar couplings yields larger enhancements. The size of the enhancement is a factor of 4 larger than obtained with the identical concentration of monomeric nitroxide radicals achieving a value of approximately 175 for the n = 2 chain.  相似文献   

4.
Using dynamic nuclear polarization (DNP)/nuclear magnetic resonance instrumentation that utilizes a microwave cavity and a balanced rf circuit, we observe a solid effect DNP enhancement of 94 at 5 T and 80 K using trityl radical as the polarizing agent. Because the buildup rate of the solid effect increases with microwave field strength, we obtain a sensitivity gain of 128. The data suggest that higher microwave field strengths would lead to further improvements in sensitivity. In addition, the observation of microwave field dependent enhancements permits us to draw conclusions about the path that polarization takes during the DNP process. By measuring the time constant for the polarization buildup and enhancement as a function of the microwave field strength, we are able to compare models of polarization transfer, and show that the major contribution to the bulk polarization arises via direct transfer from electrons, rather than transferring first to nearby nuclei and then transferring to bulk nuclei in a slow diffusion step. In addition, the model predicts that nuclei near the electron receive polarization that can relax, decrease the electron polarization, and attenuate the DNP enhancement. The magnitude of this effect depends on the number of near nuclei participating in the polarization transfer, hence the size of the diffusion barrier, their T(1), and the transfer rate. Approaches to optimizing the DNP enhancement are discussed.  相似文献   

5.
A novel mathematical treatment is proposed for computing the time evolution of dynamic nuclear polarization processes in the low temperature thermal mixing regime. Without assuming any a priori analytical form for the electron polarization, our approach provides a quantitative picture of the steady state that agrees with the well known Borghini prediction based on thermodynamic arguments, as long as the electrons-nuclei transition rates are fast compared to the other relevant time scales. Substantially different final polarization levels are achieved instead when the latter assumption is relaxed in the presence of a nuclear leakage term, even though very weak, suggesting a possible explanation for the deviation between the measured steady state polarizations and the Borghini prediction. The proposed methodology also allows us to calculate nuclear polarization and relaxation times, once the electrons/nuclei concentration ratio and the typical rates of the microscopic processes involving the two spin species are specified. Numerical results are shown to account for the manifold dynamic behaviours of typical DNP samples.  相似文献   

6.
In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.  相似文献   

7.
Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (microw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (gamma(e)gamma(l)), being approximately 660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (> or =5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms-the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in microw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments.  相似文献   

8.
We present a relativistic theory for the nuclear spin–spin coupling tensor within the polarization propagator approach using the particle-hole Dirac–Coulomb–Breit Hamiltonian and the full four-component wave function. We give explicit expressions for the coupling tensor in the random-phase approximation, neglecting the Breit interaction. A purely relativistic perturbative electron–nuclear Hamiltonian is used and it is shown how the single relativistic contribution to the coupling tensor reduces to Ramsey's three second-order terms (Fermi contact, spin–dipole, and paramagnetic spin–orbit) in the nonrelativistic limit. The principal propagator becomes complex and the leading property integrals mix atomic orbitals of different parity. The well-known propagator expressions for the coupling tensor in the nonrelativistic limit is obtained neglecting terms of the order c?n (n ? 1). © 1993 John Wiley & Sons, Inc.  相似文献   

9.
A new biradical polarizing agent, bTbtk-py, for dynamic nuclear polarization (DNP) experiments in aqueous media is reported. The synthesis is discussed in light of the requirements of the optimum, theoretical, biradical system. To date, the DNP NMR signal enhancement resulting from bTbtk-py is the largest of any biradical in the ideal glycerol/water solvent matrix, ε = 230. EPR and X-ray crystallography are used to characterize the molecule and suggest approaches for further optimizing the biradical distance and relative orientation.  相似文献   

10.
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.  相似文献   

11.
We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity ( approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.  相似文献   

12.
Agarose is a tissue‐equivalent material and its imaging characteristics similar to those of real tissues. Hence, the dynamic nuclear polarization studies of 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl (carboxy‐PROXYL) in agarose gel were carried out. The dynamic nuclear polarization parameters such as spin lattice relaxation time, longitudinal relaxivity, leakage factor, saturation parameter and coupling parameter were estimated for 2 mM carboxy‐PROXYL in phosphate‐buffered saline solution and water/agarose mixture (99 : 1). From these results, the spin probe concentration was optimized as 2 mM, and the reduction in enhancement was observed for carboxy‐PROXYL in water/agarose mixture (99 : 1) compared with phosphate‐buffered saline solution. Phantom imaging was also performed with 2 mM concentration of carboxy‐PROXYL in various concentrations of agarose gel at various radio frequency power levels. The results from the dynamic nuclear polarization measurements agree well with the phantom imaging results. These results pave the way for designing model system for human tissues suited to the biological applications of electron spin resonance/Overhauser‐enhanced magnetic resonance imaging.  相似文献   

13.
Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer--the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron-nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω(0I), where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ω(M) = ω(0S) ± ω(0I), where ω(M), ω(0S) and ω(0I) are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω(0I) > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω(0S(1))-ω(0S(2)) = ω(0I) and ω(M)~ω(0S(1)) or ω(0S(2)), where ω(0S(1)) and ω(0S(2)) are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the external magnetic field, and the electron-electron and electron-nuclear interactions on DNP enhancements.  相似文献   

14.
15.
This article develops a set of algorithms for the computer generation of nuclear spin species and nuclear spin statistical weights potentially useful in molecular spectroscopy. These algorithms generate the nuclear spin species from group structures known as generalized character cycle indices (GCCI s). Thus the required input for these algorithms is just the set of all GCCI s for the symmetry group of the molecule which can be computed easily from the character table. The algorithms are executed and illustrated with examples.  相似文献   

16.
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω(0) (-2) field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ? = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of (1)H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear (1)H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.  相似文献   

17.
Dynamic nuclear polarization of tin-119 in free radical solutions has been studied at 175 G. Scalar interactions are predominant for both bivalent and tetravalent tin compounds.  相似文献   

18.
19.
The surface of γ-alumina nanoparticles can be characterized by dynamic nuclear polarization (DNP) surface-enhanced NMR of (27)Al. DNP is combined with cross-polarization and MQ-MAS to determine local symmetries of (27)Al sites at the surface.  相似文献   

20.
Summary The simple spin polarization model for calculation of the spin densities that determine hyperfine coupling constants in free radicals is examined. Spin-unrestricted approaches, both without and with removal of spin contamination, are discussed and compared with spin-restricted treatments. Basis set design and electron correlation effects are also considered. Calculations on small pi radicals are presented to illustrate the arguments. Explanations are advanced for why some of the simpler treatments seem to work better than might be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号