首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyanobacterial aldehyde decarbonylase (AD) catalyzes conversion of fatty aldehydes (R-CHO) to alka(e)nes (R-H) and formate. Curiously, although this reaction appears to be redox-neutral and formally hydrolytic, AD has a ferritin-like protein architecture and a carboxylate-bridged dimetal cofactor that are both structurally similar to those found in di-iron oxidases and oxygenases. In addition, the in vitro activity of the AD from Nostoc punctiforme (Np) was shown to require a reducing system similar to the systems employed by these O(2)-utilizing di-iron enzymes. Here, we resolve this conundrum by showing that aldehyde cleavage by the Np AD also requires dioxygen and results in incorporation of (18)O from (18)O(2) into the formate product. AD thus oxygenates, without oxidizing, its substrate. We posit that (i) O(2) adds to the reduced cofactor to generate a metal-bound peroxide nucleophile that attacks the substrate carbonyl and initiates a radical scission of the C1-C2 bond, and (ii) the reducing system delivers two electrons during aldehyde cleavage, ensuring a redox-neutral outcome, and two additional electrons to return an oxidized form of the cofactor back to the reduced, O(2)-reactive form.  相似文献   

2.
3.
二氧化碳氧化剂在烷烃催化转化反应中的应用研究进展   总被引:1,自引:0,他引:1  
本文综述了近年来国内外有关利用二氧化碳作为氧化剂在烷烃催化转化反应中的研究状况。担载型的金属氧化物催化剂具有较好的催化活性。催化剂表面碱性位的存在可稳定活性中心并且有利于CO2的活化,CO2的作用是与烷烃脱氢产物H2和生成的表面积炭反应,从而提高反应活性及催化剂的稳定性。  相似文献   

4.
页岩气革命为低碳经济发展提供了重要契机.在低碳烷烃(甲烷和乙烷)催化转化过程中,以二氧化碳作为氧化剂参与反应,通过C-H键的选择性活化可将页岩气转化为优质化工原料——合成气和乙烯,是一种低碳烷烃转化与二氧化碳资源化利用的工艺路线.本文总结了近年来甲烷干重整与乙烷和二氧化碳反应中与C-H键活化相关的研究进展,分析了甲烷干...  相似文献   

5.
The reaction of enynes with aldehydes in the presence of a catalytic amount of [RhCl(cod)](2)/dppp results in the Pauson-Khand-type reaction without the use of gaseous carbon monoxide to give bicyclic cyclopentenones in high yields (14 examples). Aldehydes serve as a source of carbon monoxide, and their carbonyl moiety is transferred to enynes, resulting in the formation of the carbonylated products. This reaction represents the first example of a CO-transfer carbonylation.  相似文献   

6.
Possibility of using an ultradisperse copper-containing powder produced by the electrolytic method as an efficient catalyst for conversion of carbon monoxide by steam was studied.  相似文献   

7.
《Tetrahedron letters》1988,29(31):3741-3744
Various aromatic aldehydes and ketones were reduced to the corresponding hydrocarbons using ammonium formate as the hydrogen source.  相似文献   

8.
The complex [PdH(Cl)(PBu3)2], generated in situ by addition of one equivalent of NaBH4 to [PdCl2(PBu3)2], is a good catalyst precursor for the addition of methyl formate to ethene. Extra carbon monoxide is not required, and methyl propanoate is produced with high selectivity.  相似文献   

9.
Density functional calculations (B3 LYP & BP86) on a model system for the reaction between carbon monoxide and [Ni(N(3))('S(3)')](-) ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide (2-)) predict a three-step mechanism. First, CO attacks the nickel to generate a pseudo "square-pyramidal" complex, in which CO, N(3) (-), and two sulfides are basal and the central S atom of the 'S(3)'(2-) ligand backs away from Ni to form a weak Ni-S apical bond. Then, CO inserts into the Ni-N bond and the weak apical Ni--S bond rebounds to its original strength as the nickel forms a square-planar intermediate. Finally, in a one-step process N(2) leaves as the remaining N atom and carbonyl rearrange to produce the nickel isocyanate product [Ni(NCO)('S(3)')](-).  相似文献   

10.
A novel one-pot reaction has been developed for the reduction of aldehydes, ketones and primary, secondary and tertiary alcohols into their corresponding alkyl function. This is also the first reported method which can efficiently reduce primary, secondary, or tertiary alcohols, without affecting carbon-carbon double bonds, into their corresponding alkyl function in high yields. The reduction utilises either diethylsilane or n-butylsilane as the reducing agent in the presence of the Lewis acid catalyst tris(pentafluorophenyl)borane.  相似文献   

11.
The catalyst recycling in the conversion of CO2 into formate using the iridium complex with 4,7-dihydroxy-1,10-phenanthroline as a catalyst precursor is described. The catalyst precursor was dissolved in an aqueous KOH solution under CO2 pressure prior to the reaction, but was precipitated spontaneously at the end of the reaction. The acidification by the generation of formate caused the transformation from the water-soluble deprotonated form into the water-insoluble protonated form. When the reaction was carried out at 60 degrees C for 20 h using 0.1 M KOH solution under 6 MPa of H2:CO2 (1:1), the catalyst precursor was precipitated spontaneously and the added KOH was consumed completely. The catalyst was recovered by filtration, and the product was obtained by the evaporation of the filtrate. Iridium leaching into the filtrate was found to be 0.11 ppm (<2% of the loaded Ir). The recovered catalyst retained high catalytic activity for four cycles. Consequently, the CO2 conversion using the complex is an environmentally benign process, whose significant features are as follows: (i) catalyst recycling by self-precipitation/filtration, (ii) waste-free process, (iii) the easy isolation of the product, (iv) high efficiency under relatively mild conditions, and (v) aqueous catalysis without the use of organic materials. Furthermore, we have demonstrated the significant roles of the oxyanion generated from the acidic phenolic hydroxyl on the catalyst ligand, which are the catalyst recovery by acid-base equilibrium, as well as the water-solubility by its polarity and the catalyst activation by its electron-donating ability.  相似文献   

12.
《Tetrahedron letters》1986,27(20):2287-2290
A novel metod for obtaining aldehydes in good yield from primary alcohols has been devised, using the combination lead tetraacetate—manganous diacetate as the oxidizing agent.  相似文献   

13.
The oxidation of primary and secondary benzylic alcohols was achieved by using tert-butyl nitrite (t-BuONO) as a stoichiometric oxidant. Various substrates were effectively converted into the corresponding ketones or aldehydes in good to excellent yields. The reaction presumably proceeded by a nitrosyl exchange and a subsequent thermal decomposition of benzylic nitrites. This process would realize an oxidation of alcohols with oxygen in theory by combining with a reproduction of alkyl nitrites from NO and alcohols under an O2 atmosphere. In addition, almost pure oxidized products were readily obtained by simple evaporation of the reaction mixtures since t-BuONO produced only volatile side products.  相似文献   

14.
Fullerene-related carbon nanostructures can be synthesized by an arc-in-liquid system as a cost-effective technique. In this work, we investigated the effects of additional carbon sources from liquid media that were alcohols (C(m)H(2m+1)OH, m = 1-8), alkanes (C(m)H(2m+2), m = 6-7), and aromatic compounds (C6H6-C(n)H(2n), n = 1-2) on the product structures and the yield of nanocarbon-rich deposits. It was found that carbon nanoparticles (CNPs) that included multi-walled carbon nanotubes (MW-CNTs) and multi-shelled carbon nanoparticles were produced at high concentrations in the hard deposit at the cathode tip formed by the arc in the alcohols and alkanes, similar to that in a water environment. Importantly, not only graphite electrodes but also these organic compounds played a role of a carbon source to produce CNPs that led to an approximately 8-100 times higher yield than the arc-in-water system. There was a tendency that the increase in alcohol concentration and carbon content in the organic molecules positively affected the yield and production rate of the CNPs. However, the selectivity of MW-CNTs was significantly reduced when aromatic compounds were used. Structural analyses by dynamic light scattering and Raman spectroscopy revealed the dependency of the hydrodynamic particle sizes of CNPs and their crystallinity on the liquid components. For a discussion on the reaction mechanism, optical emission spectra of the arc plasma were analyzed to estimate the arc temperature. In addition, liquid byproducts were analyzed by a UV-vis absorbance spectrometer.  相似文献   

15.
It was found that, in the gas-phase oxidative cracking of C2-C5 light alkanes, the ratio between ethylene and CO in the products depends on both the residence time in a reactor and the process temperature. This is due to a change in the contributions of product formation and/or consumption channels with increasing the conversion of the reactants. However, the hydrocarbon/oxygen ratio is the main parameter responsible for the limiting ratio between these products reached in the region of deep conversions of both of the reactants. The channels of formation and, correspondingly, the composition of the main products of oxidative cracking change on going from ethane to n-pentane. In this case, the ethylene: CO ratio increases due to an increase in the concentration of ethylene in the products as the number of carbon atoms in the initial alkane molecule is increased at a constant alkane: oxygen ratio. In the oxidative cracking of the C2+ alkane constituents of natural gases, it is necessary to consider the influence of methane, which inhibits the oxidative conversion of heavier alkanes in comparison with their oxidation in an inert gas atmosphere. This leads to a significant decrease in the conversion of oxygen and an increase in the ethylene: CO ratio in the reaction products.  相似文献   

16.
17.
A variety of aldehydes reacted with iodine in ammonia water at room temperature to give the nitrile intermediates, which were trapped by addition of hydrogen peroxide, sodium azide, or dicyandiamide to produce their corresponding amides, tetrazoles, and 1,3,5-triazines in modest to high yields. The one-pot tandem reactions were conducted in water media, and the products were obtained simply by extraction or filtration.  相似文献   

18.
Conclusions By using radioactive carbon monoxide it was shown that in the initial step of the reaction for the hydropolymerization of ethylene in the presence of hydrogen, initiated by carbon monoxide, at 190°, the formation of methane is the result of the hydrocracking of ethylene or of the hydrocarbons derived from it.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2126–2127, September, 1973.  相似文献   

19.
A facile and rapid synthesis of enantiopure mono-substituted 1,2-diols was achieved by the tandem aminoxylation-allylation reactions of aldehydes.  相似文献   

20.
The CO gas-free carbonylative cyclization of organic halides, with tethered nitrogen, oxygen, and carbon nucleophiles, with aldehydes as a substitute for carbon monoxide can be achieved in the presence of a catalytic amount of a rhodium complex. The reaction involves the decarbonylation of the aldehyde by the rhodium catalyst, and the successive carbonylation of an organic halide utilizing the rhodium carbonyl that is formed in situ. Aldehydes having electron-withdrawing groups showed a higher ability to donate the carbonyl moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号