首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrinsic viscosity and light scattering measurements on fractionated samples of atactic poly (methyl methacrylate) show a conformational transition around 45–50° in toluene and benzene but not in 2-heptanone. The transition is detected by a stepwise change in Kθ (i.e. the unperturbed dimensions) with increasing temperature.  相似文献   

2.
Model reactions were carried out to simulate the acidolysis process for polyarylate synthesis by using p-tert-butylphenyl acetate (ptBuPhOAc) and benzoic acid in diphenyl ether. p-tert-Butylphenol was formed in the reaction mixture and its concentration stayed constant throughout the reaction. Acetic benzoic anhydride and benzoic anhydride were detected by NMR. Based on this experimental evidence, a mechanism for the acidolysis was proposed involving the mixed anhydride. The kinetics of the acidolysis reaction was studied for this model reaction. The overall reaction order is two and the reaction order with respect to each reactant is one. Second-order reaction rate constants were measured at different reaction conditions (200–250°C). The activation energy (Ea), activation enthalpy (ΔH), and activation entropy (ΔS) were calculated from these data. The thermodynamic parameters of the acidolysis reaction were also measured for the analogous reaction of p-tert-butylphenyl pivalate (ptBuPhOPiv) and benzoic acid. The kinetics of two other elementary reactions involved in the acidolysis reaction were also studied: p-tert-butylphenol with acetic anhydride or benzoic anhydride, and p-tert-butylphenyl pivalate with benzoic acid.  相似文献   

3.
Soluble block copolymers based on natural rubber and polyurethane oligomers derived from 1,3 butane diol and toluene diisocyanate were synthesized for the first time. The dilute solution properties of these block copolymers dissolved in tetrahydrofuran (THF) were studied by viscometry and gel permeation chromatography (GPC). The Mark–Houwink constants K and a of the block copolymer system were determined by the molecular weight data from GPC combined with the viscosity data. Both the values were found to be in the range usually given by flexible elastomers. The intrinsic viscosity values were found to decrease successively with a decrease in the NCO/OH ratio from 1.12 to 1.05. The unperturbed chain parameters, Kθ and B were determined from the viscosity data. The Kθ calculated was used to get the unperturbed end‐to‐end distance and radius of gyration of the block copolymer systems in THF. The viscosity data were also used to study the chain conformation in dilute solutions. It was found that the molecules adopt a compressed core and shell conformation in which the higher molecular weight component, NR, forms the shell, which compresses the PU core. All the block copolymers assume a compressed segregated core and shell model which changes to a partially segregated core and shell conformation, or partially Gaussian conformation, at the transition temperature located at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2104–2111, 2006  相似文献   

4.
A thermoplastic urethane elastomer prepared from a polycaprolactone diol, 4,4′-diphenylmethane diisocyanate, and 1,5-pentanediol was fractionated and the solution properties of the fractions were characterized in terms of viscosity and sedimentation. Mark-Houwink relations were established for data obtained at 30° in various solvents: In dimethylacetamide, tetramethylurea, and N-methyl pyrrolidone, the value of Kθ increased systematically in the range (1.7 to 2.0) × 10?3. Lower values of Kθ were obtained in dimethylformamide (0.8 × 10?3) and meta-cresol (0.9 × 10?3). The molecular expansion coefficients in the various solvents were approximated from the experimental viscosity data. Short-range interactions between the solvent molecules and polymer chains are suggested as possible causes for differences in the hydrodynamic parameters.  相似文献   

5.
The unperturbed dimensions of isotactic poly(2-hydroxyethyl methacrylate) (PHEMA) were evaluated from intrinsic viscosity measurements in water, ethanol, 1-propanol, 2-propanol, and 2-butanol under θ conditions over the temperature range of 3.7–32.1°C. The smallest value of unperturbed dimensions (Kθ) and the largest negative temperature dependence of unperturbed dimensions and the polymer–solvent interaction parameter (B) were obtained in aqueous θ solvent relative to the corresponding organic θ solvents. These results were interpreted by the hydrophobic interaction between the hydrophobic groups of isotactic PHEMA and water solvent. The temperature coefficient of the unperturbed dimensions, d ln〈r〉/dT, obtained in this study has a negative value of ?1.44 × 10?3 deg?1 under chemically similar θ solvents such as ethanol, 1-propanol, 2-propanol, and 2-butanol where specific solvent effects are eliminated or minimized. In order to obtain the thermodynamic parameters for mixing between isotactic PHEMA and solvents, the plots of the polymer–solvent interaction parameter versus reciprocal absolute temperature (1/T) were carried out. Both the entropy of dilution and enthalpy of dilution show the negative values for water, methanol, and t-butanol, whereas the positive ones for ethanol, 1-propanol, 2-propanol, and 2-butanol. This result indicates that the solution of isotactic PHEMA behave as exothermal systems in the former class of solvents and endothermal ones in the latter class of solvents.  相似文献   

6.
Copolymerization of 2-hydroxyethyl methacrylate (HEMA) with ethyl methacrylate (EMA) and n-butyl methacrylate (BMA) was carried out in bulk at 70°C ± 1°C using 0.2% benzoyl peroxide as initiator in nitrogen atmosphere. Number average molecular weight (M n) of the copolymers was determined by dynamic osmometry. Intrinsic viscosity [η] of HEMA-BMA copolymers was evaluated at 35°C in dimethyl formamide. These copolymers were also characterized by infrared spectroscopy and density measurements. Cohesive energy densities (CED) of these polymers were determined by observing their swelling behavior in different solvents. It was found that a decrease in alkyl methacrylate content resulted in an increase in the CED values of the copolymers.  相似文献   

7.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

8.
Novel thermally latent self‐crosslinkable copolymers ( 14 and 15 ) containing hemiacetal ester and oxetane moieties were synthesized by the radical copolymerizations of 1‐propoxyethyl methacrylate, 3‐ethyl‐3‐methacryloyloxymethyl oxetane, and/or n‐butyl methacrylate at 60 °C in the presence of 2,2′‐azoisobutylonitrile as an initiator. The obtained copolymers showed good solubility for common organic solvents such as tetrahydrofuran, chloroform, and dimethyl sulfoxide (DMSO). The thermal crosslinking behaviors were examined with several Lewis acid catalysts ( 6 ). In particular, the treatment with aluminum‐2‐ethylhexanate triethanolamine complex ( 6c ) at 160 °C was found to efficiently yield the corresponding self‐crosslinked polymers ( 14′ and 15′ ). Incidentally, the resulting products were hardly insoluble in various organic solvents, including DMSO. The thermal properties of the obtained self‐crosslinked polymers 14′ and 15′ were estimated by thermogravimetric analysis and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4260–4270, 2005  相似文献   

9.
Poly(methacrylonitrile-co-styrene) (PMANS) and Poly(acrylo-nitrile- co- styrene) (PANS) having 1:1 composition were prepared with free-radical initiators. The polymers were fractionated into fractions having narrow molecular weight distribution. The dilute solution properties of the fractionated copolymers were studied by light scattering, viscometry, and osmometry in solvents (methyl ethyl ketone, dimethylformamide, and acetone), [n]-M w and(r2)w l/2?M w relationships have been established. The validity of the various graphical methods for the determination of Flory′s constant, K θ were observed.

From the values of the steric factors it was noticed that the copolymer coil of PANS is stiffer than that of PMANS.  相似文献   

10.
Styrene/ethyl methacrylate (SEMA) colloids were obtained by cocondensation at 77 K of the monomers with several metals such as Au, Pd, In and Sn. The colloids were polymerized with 2,2′-azoisobutyronitrile and dibenzoyl peroxide as radical initiators at 60°C for 3.5 h. A viscosity average molecular weight (104 < M v < 105) was obtained depending upon the metal used. The particle size of these clusters dispersed in the copolymers ranges from 20 to 31 Å. The metal clusters are incorporated in the copolymers.  相似文献   

11.
It is known that propargyl-phenylethers rearrange at about 200° to 2 H-chromenes [1–4]. It is shown that this rearrangement occurs in benzene or chloroform at lower temperatures (20–80°) in the presence of silver-tetrafluoroborate (or-trifluoracetate). The ethers examined are presented in Scheme 1. Thus in chloroform at 61° in the presence of AgBF4, phenyl-propargylether ( 3 ) yields 2 H-chromene ( 13 ). With 0.78 molar equivalents AgBF4 in benzene at 80° the same ether 3 yields a 3:1 mixture of 2-methyl-cumaron ( 14 ) and 2 H-chromene ( 13 ). From 1′-methylpropargyl-phenylether ( 4 ) and 2′-butinyl-3,5-dimethylphenylether ( 5 ) under similar conditions the corresponding chromenes 16 and 17 resp. are obtained. Rearrangement of propargyl- and 2′-butinyl-1-methyl-2-naphthylether ( 6 and 7 resp.) in benzene at 80° in the presence of AgBF4 gives the corresponding allenyl-naphthalenones 18 and 19 resp. Treatment of propargyl- and 2′-butinyl-mesityl-ether ( 8 and 9 resp.), and propargyl- and l′-methylpropargyl- 2 , 6 -dimethyl-phenylether ( 10 and 11 resp.) in benzene at 80° with AgRF, yields as the only product the corresponding 3 -allenyl-phenols 21 , 22 , 24 and 25 (Scheme 3). It is shown that in the presence of μ-dichlor-dirhodiuni (1)-tetracarbonyl in benzene a t 80° the ether 4 rearranges to 2-methyl-2H-chromene (16). However with this catalyst the predominant reaction is a cleavage to phenol. No reaction was observed when ethers 3 and 12 , (Scheme 7 ) were treated with the tris-(trimethylsily1)-ester of vanadic acid in benzene a t 80° (see also [8]). By analogy with the known mechanism for thc silver catalysis of the reversible propargylesterl/allenylester rearrangement [S], the silver (1)ion is assumed to form a pre-equilibrium π-complex with the C, C-triplebond of the substrate. This complex then undergoes a [3s, 3s]-sigmatropic rearrangement (Scheme 2). In the case of the others 6 , 7 and 12 the resulting allenyldienones were isolated. The 2,G-dimethyl substituted ethers 8 , 9 , 10 and 11 resp. first give the usual allenyl- dienones (Scheme 3). These then undergo a novel silver catalysed dienon-phenol-rearrangement (Sclzenzu4) to give the 3-allenylphenols 21 , 22 , 24 and 25 . Thc others 3 , 4 and 5 with free ortho positions presumably rearrange first to the non-isolated 2-allenyl-phenols 15 , 42 and 43 resp.(Scheme 7). These then rearrange, either thermally or by silver (1)ion catalysis to the 2H-chromenes 13 , 16 and 17 resp. The rate of the rearrangement of 2-allenylphenol ( 15 ) to 13 at room temperature in benzene or chloroform is approximately doubled when silver ions are present as catalyst.  相似文献   

12.
Styrene–acrylonitrile (St–AN) copolymers of three compositions—27.4 mole-% (SA1); 38.5 mole-% (SA2); and 47.5 mole-% (SA3) acrylonitrile—and styrene–methyl methacrylate (St–MMA) copolymer (SM) of 46.5 mole-% methyl methacrylate were prepared by bulk polymerization at 60°C with benzoyl peroxide as the initiator, and were then fractionated. The molecular weights of unfractionated and fractionated samples were determined by light scattering in a number of solvents. The [η] versus M?w relations at 30°C were established for SA1, SA2, SM, and polystyrene (PSt) in ethyl acetate (EAc), dimethyl formamide (DMF), and γ-butyrolactone (γ-BL), and for SA3 in methyl ethyl ketone (MEK), DMF, and γ-BL. Second virial coefficients A2 and the Huggins constant were determined. From values of A2 and the exponent a of the Mark–Houwink relation it is seen that the solvent power for samples SA1, SA2, and PSt is in the order EAc < γ-BL < DMF, while for sample SA3 the solvent power is in the order MEK < γ-BL < DMF. The solvent power decreases with an increase in AN content. The solvent power of the three solvents used for SM copolymer sample is practically the same within experimental errors. From the a values it is concluded that in a given solvent the copolymer chains are more extended than the corresponding homopolymers.  相似文献   

13.
The kinetics of the polymerization of methyl methacrylate (MMA) in the presence of imidazole (Im), 2-methylimidazole (2MIm), or benz-imidazole (BIm) in tetrahydrofuran (THF) at 15–40°C was investigated by dilatometry. The rate of polymerization, Rp , was expressed by Rp = k[Im] [MMA]2, where k = 3.0 × 10?6 L2/(mol2 s) in THF at 30°C. The overall activation energy, Ea , was 6.9 kcal/mol for the Im system and 7.3 kcal/mol for the 2MIm system. The relation between logRp and 1 T was not linear for the BIm system. The polymers obtained were soluble in acetone, chloroform, benzene, and THF. The melting points of the polymers were in the range of 258–280°C. The 1H-NMR spectra indicated that the polymers were made up of about 58–72% of syndiotactic structure. The polymerization mechanism is discussed on the basis of these results.  相似文献   

14.
1,4-Bis(p-tert-butylphenylselenomethyl)benzene was used as a bifunctional photoiniferter for the polymerization of methyl methacrylate (MMA). Both the polymer yields and the number average of molecular weights ([Mbar]n) of polymers increased with the polymerization time and the [Mbar]n linearly increased with polymer yield. The addition of MMA to the poly(MMA) with irradiation increased the [Mbar]n of the polymer. Photoirradiation of telechelic polystyrene having phenylseleno groups at both ends as polymeric photoiniferter in the presence of MMA or p-chloromethylstyrene afforded effectively corresponding to the ABA type triblock copolymers. On the other hand, photopolymerization of p-methylstyrene with ABA type triblock copolymer of styrene and p-chloromethylstyrene as polymeric photoiniferter afforded to multiblock copolymer of styrene and p-substituted styrenes.  相似文献   

15.
Ten unfractionated poly(2,6-diphenyl-1,4-phenylene oxide) samples were examined by gel permeation chromatography (GPC) and intrinsic viscosity [η] at 50°C in benzene, by intrinsic viscosity at 25°C in chloroform, and by light scattering at 30°C in chloroform. The GPC column was calibrated with ten narrow-distribution polystyrenes and styrene monomer to yield a “universal” relation of log ([η]M) versus elution volume. GPC-average molecular weights, defined as M?gpc = \documentclass{article}\pagestyle{empty}\begin{document}$\Sigma w_i [\eta ]_i M_i /\Sigma w_i [\eta ]_i$\end{document}, wi denoting the weight fraction of polymer of molecular weight Mi, were computed from the GPC and [η] data on the polyethers. The M?GPC were then compared with the weight-average M?w from light scattering. The intrinsic viscosity (dl/g) versus molecular weight relations for the unfractionated poly(2,6-diphenyl-1,4-phenylene oxides) determined over the molecular weight range 14,000 ≤ M?w ≤ 1,145,000 are log [η] = ?3.494 + 0.609 log M?w (chloroform, 25°C) and log [η] = ?3.705 + 0.638 log M?w (benzene, 50°C). The M?w(GPC)/M?n(GPC) ratios for the polymers in the molecular weight range 14,000 ≤ M?w ≤ 123,000 approximate 1.5 according to computer integrations of the GPC curves with the use of the “universal” calibration and the measured log [η] versus log M?w relation. The higher molecular weight polymers (326,000 ≤ M?w ≤ 1,145,000) show slightly broadened distributions.  相似文献   

16.
The copolymerization of 2-propenyl isocyanate ( 1 ) with trimethylsilyl methacrylate ( 2 ) has been investigated. 1 is an electron donor monomer with little tendency to undergo homopolymerization, while 2 is an electron acceptor monomer, capable of free radical homopolymerization. Polymerization to low conversion in benzene gave copolymers with preferential incorporation of 2 and a tendency towards alternating copolymers with increasing amounts of 1 in the feed (1 : 1.13 with a 9 : 1 feed ratio of monomers 1 : 2 ). The glass transition temperatures of the amorphous polymers are in the range from 100–70°C, with a Tg of poly(trimethylsilyl methacrylate) being 135°C. Desilylation occurs in the presence of water, causing an exothermal reaction above the glass transition temperature probably with formation of amides, a reaction that can be used for crosslinking. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 611–616, 1998  相似文献   

17.
Soluble and self-crosslinkable linear copolymers with pendant epoxy and pyridyl groups were obtained from 1-ethenyl-4-(2,3-epoxy-1-propoxy)benzene (M1) and vinylpyridines (M2) by the action of α,α′-azobisisobutyronitrile. The monomer reactivity ratios were determined in tetrahydrofuran at 60°C (r1, r2, and vinylpyridine given): 0.467, 0.638, 4-vinylpyridine; 0.556, 1.25, 2-vinylpyridine; 0.639, 1.38, 5-ethyl-2-vinylpyridine. The Q and e values for 1-ethenyl-4-(2,3-epoxy-1-propoxy)-benzene were calculated as 1.3–1.6 and ?1.1–?1.3, respectively, with the reported Qe values for these vinylpyridines. The intrinsic viscosities of the copolymers were found to be 0.15–0.30 in tetrahydrofuran at 30°C and to be dependent on the copolymer composition. The copolymers with these vinylpyridines were amorphous, had no clear melting points, and became insoluble crosslinked polymers under heating without further addition of any curing agents.  相似文献   

18.
Several copolymers of 2-hydroxyethyl methacrylate (HEMA) with methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA), and methyl methacrylate (MMA) were prepared at 70°C in nitrogen atmosphere using 0.2% (w/v) benzoyl peroxide as initiator. The copolymer composition was evaluated by estimation of hydroxyl group in the copolymers. Intrinsic viscosity of HEMA–EA, HEMA–BA, and HEMA–MMA copolymers was determined at 35°C in dimethyl formamide. Molecular weight distribution of copolymer samples was evaluated by gel permeation chromatography. Thermal behavior of the copolymers was investigated by dynamic thermogravimetry. Thermal stability decreased on increasing HEMA content in MA, EA, and BA copolymers. However, a reverse trend was observed in HEMA–MMA copolymers.  相似文献   

19.
The atom transfer radical copolymerization of styrene with 2‐[(perfluorononenyl)oxy] ethyl methacrylate was performed in benzotrifluoride at 100 °C in the presence of 1‐bromoethyl benzene (1‐BrEB), cuprous bromide (CuBr), and α,α′‐bipyridine (bpy; [1‐BrEB]0/[CuBr]0/[bpy]0 = 1/1/3). The experimental results demonstrate that this polymerization proceeded in a living fashion, producing fluorinated random copolymers with narrow polydispersities, controlled molecular weights, and desired unit ratios. The compositions of the copolymers were calculated from 1H NMR spectra. The monomer reactivity ratios were obtained with the Skeist integral method. The copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and differential scanning calorimetry. The solid surface characteristics of the copolymers were evaluated with contact‐angle measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2670–2676, 2001  相似文献   

20.
The copolymerization of divinylbenzene (DVB) and N‐isopropylacrylamide (NIPAm) with dimethyl 2,2′‐azobisisobutyrate of a concentration as high as 0.50 mol/L proceeded homogeneously without any gelation at 80 °C in N,N‐dimethylformamide, where the concentrations of DVB and NIPAm were 0.15 and 0.50 mol/L. The copolymer yield increased with time and leveled off over 50 min. Although DVB was consumed more rapidly than NIPAm, both comonomers were completely consumed in 50 min. The homogeneous polymerization system at 80 °C involved electron spin resonance‐observable propagating polymer radicals, the total concentration of which increased with time. The resulting copolymer was soluble in tetrahydrofuran, chloroform, acetone, ethyl acetate, acetonitrile, N,N‐dimethylformamide, dimethyl sulfoxide, and methanol, but insoluble in benzene, n‐hexane, and water. The copolymer showed an upper critical solution temperature (50 °C on cooling) in a methanol–water [11:3 (v/v)] mixture. Dimethyl 2,2′‐azobisisobutyrate fragments as high as 37–45 mol % were incorporated as terminal groups in the copolymers through initiation and primary radical termination. The contents of DVB and NIPAm were 10–30 mol % and 30–50 mol %, respectively. The intrinsic viscosity of the copolymer was very low (0.09 dL/g) at 30 °C in tetrahydrofuran despite high weight‐average molecular weight (1.2 × l06 by multi‐angle laser light scattering). These results indicate that the copolymer was of hyperbranched structure. By transmission electron microscopy observation, the individual copolymer molecules were visualized as nanoparticle of 6–20 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1609–1617, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号