首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-Biphenylyldiazomethane was excited by femtosecond pulses of UV light in acetonitrile, in cyclohexane, and in methanol. Ultrafast photolysis produces a singlet excited state of p-biphenylyldiazomethane with lambdamax = 490 nm, and lifetimes of less than 300 fs in acetonitrile, in cyclohexane, and in methanol. The decay of the excited state is accompanied by the growth of transient absorption with lambdamax = 360 nm. The carrier of this transient absorption is attributed to singlet p-biphenylylcarbene, a result that is consistent with the predictions of TD-DFT calculations. The singlet carbene lifetimes are 200 and 77 ps in acetonitrile and cyclohexane, respectively, and are controlled by intersystem crossing to the lower energy triplet state. The transient absorption does not decay to baseline in acetonitrile, because of the formation of nitrile ylide. The equilibrium mixture of singlet and triplet p-biphenylylcarbene reacts with acetonitrile to form a nitrile ylide (lambdamax = 370 nm), and with cyclohexane by C-H insertion 1-20 ns after the laser pulse. The singlet carbene lifetime is only 7.9 ps in methanol, owing to a rapid reaction with the solvent. Reaction with the solvent gives rise, in part, to a p-biphenylylbenzyl cation (lambdamax = 450 nm, tau = 6.3 ps) in methanol.  相似文献   

2.
The influence of coordinating solvents on singlet-to-triplet carbene intersystem crossing (ISC) rates has been studied with diphenylcarbene (DPC) and para-biphenyltrifluoromethylcarbene (BpCCF 3) by using ultrafast time-resolved spectroscopy. DPC has a triplet ground state in all of the solvents considered, and the concentration of singlet carbene at equilibrium is too small to be measured. It is found that the lifetime of (1)DPC is extended in acetonitrile, benzene, tetrahydrofuran, dichloromethane, and halobenzene solvents relative to cyclohexane. The solvent effect does not well correlate with bulk measures of solvent polarity. The singlet-triplet energy separation of BpCCF 3 is close to zero. The data demonstrates that BpCCF 3 has a triplet ground state in benzene, fluorobenzene, and hexafluorobenzene. Halogenated solvents are found to dramatically retard the rate of ISC in (1)BpCCF 3. We postulate that the empty p orbital of a singlet carbene coordinates with a nonbonding pair of electrons of a halogen atom of the solvent to form a pseudoylide solvent complex, stabilize the singlet carbene, and decrease the singlet-triplet (S-T) energy gap. The "golden rule" of radiationless transitions posits that the smaller the energy gap between the two states, the faster their rate of interconversion. To explain the apparent violation of the golden rule of radiationless transitions for the carbene ISC processes monitored in this study, we propose that the significantly different specific solvation of the singlet and triplet carbenes imposes a Franck-Condon-like factor on the ISC process. Those solvents that most solvate the singlet carbene will also have the greatest structural difference between singlet carbene-solvent complex and their triplet spin isomer-solvent complex, the smallest S-T gap, and the slowest ISC rate. Alternatively, one can propose that a highly solvated singlet carbene must desolvate prior to ISC, and that this requirement decelerates the radiationless transition.  相似文献   

3.
The primary pathways of the photodecomposition of 9-fluorenol (FOH) were studied in polar and nonpolar solvents by use of laser flash-photolysis with a resolution time of 10 ps. In solvents of high polarity, that is, in 1,1.1,3,3,3-hexafluoroisopropanol (HFIP), 2,2,2-trifluoroethanol (TFE), formamide or water, the fluorenyl cation, F+, forms by heterolytic C-O bond cleavage. In H2O, the initial (10 ps) spectrum of F+ has lambdamax at <460 nm. This absorption red-shifts with T = 25 ps to the "classical" spectrum with lambdamax = 510-515 nm. This process is assigned to the solvation of the initial "naked" cation, or rather, the contact ion pair. The lifetime of the solvated fluorenyl cation in H2O (or D2O) and TFE was measured to be tau 20 ps and 1 ns, respectively. In solvents of lower polarity such as alkanes, ethers and alcohols, the long-lived (tau 1/2 1 micros) fluorenyl radical, F., (lambdamax = 500 nm) forms through homolytic C-O cleavage. In addition to the radical and the cation, the vibrationally relaxed excited singlet state of FOH is seen with its absorption at approximately 640 nm; its lifetime is strongly dependent on the solvent, from 10 ps for formamide to 1.7 ns for cyclohexane. The rate constant for singlet decay increases exponentially with the polarity of the solvent (as expressed by the Dimroth-Reichardt ET value) or with the Gutmann solvent acceptor number. The relaxation of S1 to S0 is accompanied by homolytic C9-O bond cleavage (except in HFIP, TFE, and water, where S1 is not seen).  相似文献   

4.
Ultrafast photolysis of 9-diazofluorene (DAF) produces a broadly absorbing transient within the instrument time resolution (300 fs), which is assigned to an excited state of the diazo compound. The diazo excited state fragments to form fluorenylidene (Fl) in both its lowest energy singlet state (1Fl, 405-430 nm, depending on the solvent) and a higher energy singlet state (370 nm, 1Fl*). The excited singlet carbene has a lifetime of 20.9 ps in acetonitrile and decays to the lower energy singlet state (1Fl), which relaxes to the triplet ground state (3Fl) in acetonitrile, cyclohexane, benzene, and hexafluorobenzene. The equilibrium mixture of singlet and triplet fluorenylidene reacts with these solvents. Singlet fluorenylidene reacts with methanol and cyclohexene in competition with relaxation to 3Fl. One of the reaction products in methanol is the 9-fluorenyl cation. The rate of intersystem crossing (ISC) in hexafluorobenzene and other halogenated solvents is remarkably slow given that carbene ISC rates are generally fastest in nonpolar solvents. An explanation of this effect is advanced.  相似文献   

5.
Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with lambda(max) approximately 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenylmethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular proton-transfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent. No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.  相似文献   

6.
The solvent dependence of the 2-naphthyl(carbomethoxy)carbene (2) singlet-triplet energy gap has been examined by time-resolved infrared (TRIR) and computational methods. The ground state of 2 changes from the triplet state in hexane to the singlet state in acetonitrile. Preferential stabilization of the singlet carbene is the result of its increased dipole moment in polar solvents. Variable-temperature TRIR experiments provide measurements of the enthalpic and entropic differences between (1)2 and (3)2 and suggest that solvent and geometry effects on the entropy of singlet and triplet carbenes can offset differences arising from spin multiplicity. B3LYP calculations using the polarizable continuum solvation model (PCM) reproduce the general trends in enthalpic differences seen experimentally.  相似文献   

7.
Laser flash photolysis (LFP, 308 nm) of endo-10-halo-10'-N,N-dimethylcarboxamidetricyclo[4.3.1.0]-deca-2,4-diene (1Cl and 1F) releases indan and halocarbene amide (2Cl and 2F). Although the carbenes are not UV-vis active, they react rapidly with pyridine to form ylides (4Cl, 4F), which are readily detected in LFP experiments (lambda(max) = 450 nm). Dioxane decreases the observed rate of carbene reaction with pyridine in CF(2)ClCFCl(2). Small amounts of THF decrease the observed rate of reaction of carbene 2F with pyridine but increase the rate of reaction of carbene 2Cl with pyridine. LFP (266 nm) of dienes 1Cl and 1F in CF(2)ClCFCl(2) with IR detection produces carbenes 2Cl and 2F with carbonyl vibrations at 1635 and 1650 cm(-1), respectively. In dioxane or THF solvent, LFP produces the corresponding ether ylides (5Cl, 5F) by capture of carbenes 2Cl and 2F. The ylides have broad carbonyl vibrations between 1560 and 1610 cm(-1). The addition of a small amount of dioxane in CFCl(2)CF(2)Cl extends the lifetime of the carbene. This observation, together with the ether-induced retardation of the rates of carbene capture by tetramethylethylene and pyridine, is evidence for solvation of the carbene by dioxane.  相似文献   

8.
Ultrafast laser flash photolysis (310 nm) of methyl 2-napthyldiazoacetate (2-NpCN2CO2CH3) in acetonitrile or cyclohexane produces a diazo excited state which absorbs broadly in the visible region (tau = 300 fs). The decay of the excited diazo compound is accompanied by growth of the vibrationally excited singlet 2-naphthyl(carbomethoxy)carbene ((1)NpCCO2CH3). The singlet carbene absorbs at 360 and 470 nm. In acetonitrile these bands do not decay over 3 ns, but they do decay by approximately 50% of their original intensity in cyclohexane in 3 ns. It is concluded that (1)NpCCO2CH3 has a singlet ground state in acetonitrile but a triplet ground state in cyclohexane. Related experiments reveal a singlet ground state in Freon-113 and chloroform. This interpretation is supported by ultrafast IR spectroscopy, which confirms that only (1)NpCCO2CH3 is formed within 50 ps of the laser pulse rather than a singlet-triplet equilibrium mixture of carbene. The planar singlet relaxes to the preferred perpendicular singlet over a few tens of picoseconds, as evidenced by a red shift of the carbonyl stretching vibration. Although our data agrees with previous studies, its interpretation is somewhat altered.  相似文献   

9.
Dynamics of the formation of the carbocation in the ground state as a result of photoinduced proton transfer from a solvent to the excited state of 1,2,2,3-tetramethyl-1,2-dihydroquinoline (3MDHQ) in MeOH and 2,2,2-trifluoroethanol (TFE) was registered by pump-probe laser photolysis (λpump = 310 nm) with femtosecond time resolution. The lifetimes of the excited singlet state of 3MDHQ τ = 115 and 780 ps were determined in TFE and MeOH, respectively. The transient species with absorption spectrum corre-sponding to the spectrum of the carbocation from 3MDHQ (λmax = 480 nm) is generated at time delays lower than 500 fs from the unrelaxed excited singlet state.  相似文献   

10.
Photoinduced electron transfer (PET) from excited probes attached to proteins is of considerable current interest. Photochemical processes following 532 nm excitation of triphenyl methane dye, crystal violet (CV+) bound to a protein, bovine serum albumin (BSA), have been investigated in picosecond (ps) to microseconds (μs) time scales by flash photolysis technique. The excited singlet state lifetime of CV+ is found to be increased to 130 ps as compared to 1–5 ps for the unbound dye in low viscosity solvents. From flash photolysis studies in microsecond region, transient absorption in the region 650 nm is observed which is attributed to the dication radical CV√2+ formed by electron transfer from 3CV+* to BSA, contrary to electron transfer from BSA to the excited dye as proposed in a recent report. Supporting spectral evidence for the electron transfer from 3CV+* to BSA is obtained from pulse radiolysis studies.  相似文献   

11.
[reaction: see text] Photolysis of 3-(2,2,2-triphenylethoxy)-3-chlorodiazirine gives 2,2,2-triphenylethoxychlorocarbene which fragments with 1,2-phenyl migration and loss of CO and Cl(-) to yield the 1,1,2-triphenylethyl cation and thence 1,1,2-triphenylethene by proton loss. However, ps and fs laser flash photolysis provides evidence that up to 25% of the alkene product stems from carbocation that arises directly from excited diazirine rather than from the carbene.  相似文献   

12.
Dynamics of the excited singlet (both the S2 and S1) states of a ketocyanine dye, namely, 2,5-bis[(2,3-dihydroindolyl)-propylene]-cyclopentanone (KCD), have been investigated in different kinds of media using steady-state absorption and emission as well as femtosecond transient absorption spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation of KCD to its second excited singlet state, reveal dual fluorescence (emission from both the S2 and S1 states) behavior. Although the intensity of the S2 --> S0 fluorescence is weaker than that of the S1 --> S0 fluorescence in solutions at room temperature (298 K), the former becomes as much as or more intense than the latter in rigid matrixes at 77 K. The lifetime of the S2 state is short and varies between 0.2 and 0.6 ps in different solvents. After its creation, the S2 state undergoes two simultaneous processes, namely, S2 --> S0 fluorescence and S2 --> S1 internal conversion. Time-resolved measurements reveal the presence of an ultrafast component in the decay dynamics of the S1 state. A good correlation between the lifetime of this component and the longitudinal relaxation times (tauL) of the solvents suggests that this component arises due to solvation in polar solvents. More significant evolution of the spectroscopic properties of the S1 state in alcoholic solvents in the ultrafast time domain has been explained by the occurrence of the repositioning of the hydrogen bonds around the carbonyl group in the excited state of KCD. In 2,2,2-trifluoroethanol, a strongly hydrogen bond donating solvent, it has even been possible to establish the existence of two distinct forms of the S1 state, namely, the non-hydrogen-bonded (or free) molecule and the hydrogen-bonded complex.  相似文献   

13.
Photobleaching and absorption recovery of the fundamental state of pinacyanol have been investigated in different solvents, using a single picosecond pulse. In a viscous solvent, glycerol, the recovery time constant is τ = (330 ± 30) ps which may be compared with the fluorescence lifetime τ = (302 ± 29) ps, as measured using a steak camera. In the lighter alcohols, methanol or isopropanol, the shorter recovery time constant τ < 10 ps indicates a very efficient non-radiative process, internal conversion between the two singlet states involved.  相似文献   

14.
Photolysis (254 nm) of methyl 8-chloro-3a,7a-methanoindan-8-carboxylate (5) in argon at 14 K produces carbomethoxychlorocarbene (6) as a persistent species. The IR and UV-vis spectra of the carbene were recorded and analyzed with the aid of density functional calculations (B3-LYP/6-31G). The IR spectrum of 6 is consistent with the carbene having a nonplanar singlet ground state, in agreement with the G3(MP2)//B3-LYP calculations of Scott and Radom (accompanying paper). Irradiation (300 nm) of 5 in solution produces indane in 97% yield. In cyclohexane, carbene 6 is trapped by insertion into a CH bond, whereas in 2,3-dimethylbutene it adds to the double bond to form a cyclopropane. Laser flash photolysis of 5 (308 nm, 17 ns, XeCl excimer) produces carbene 6 which reacts with pyridine to form an ylide (lambda(max) = 440 nm). It was possible to resolve the growth of the ylide in Freon-113 (CF(2)ClCFCl(2)) to measure the lifetime (tau = 114 ns, ambient temperature) of the carbene and the absolute rate constant of its reaction with pyridine (k(pyr) = 2 x 10(9) M(-)(1) s(-)(1)). A plot of log(1/tau) versus 1/T in CF(2)ClCFCl(2) is linear with Arrhenius parameters E(a) = 10.9 +/- 0.8 kJ/mol and A = 10(9.1)(+/-)(0.2) s(-)(1). In perfluorohexane, a less reactive solvent than Freon-113, E(a) = 23.4 +/- 1.7 kJ/mol, A = 10(10.6)(+/-)(0.) s(-)(1), and tau = 354 ns at 293 K. It is argued that the activation barrier to carbene disappearance in perfluorohexane represents the lower limit to the barrier to Wolff rearrangement of the carbene.  相似文献   

15.
The photocarbonylation reaction of Group 6 Fischer carbene complexes has been studied by DFT and experimental procedures. The process occurs by intersystem crossing (ISC) from the lowest excited singlet state (S1) to the lowest triplet state (T1), the latter structure being decisive for the outcome of the reaction. Methylenepentacarbonylchromium(0) complexes, alkoxypentacarbonylchromium(0)carbene complexes, and alkoxyphosphinetetracarbonylchromium(0) carbene complexes have coordinatively unsaturated chromacyclopropanone T1 structures with a biradical character. The evolution of the metallacyclopropanone species occurs by a jump (spin inversion) to the S(0) hypersurface by coordination of a molecule of the solvent, leading to ketene-derived products in the presence of ketenophiles or reverting to the starting carbene complex in their absence. The T1 excited states obtained from methylenephosphinetetracarbonylchromium(0) complexes and pentacarbonyltungsten(0)carbene complexes are unable to produce the carbonylation. The reaction with ketenophiles is favored in coordinating solvents, which has been tested experimentally in the reaction of alkoxypentacarbonylchromium(0) complexes and imines.  相似文献   

16.
Effect of solvent on the excited-state photophysical properties of curcumin   总被引:3,自引:0,他引:3  
Photophysical properties of curcumin, 1,7-bis-(4-hydroxy-3-methoxy phenyl)-1,6-heptadiene-2,5-dione, a pigment found in the rhizomes of Curcuma longa (turmeric) have been studied in different kinds of organic solvent and also in Triton X-100 aqueous micellar media using time-resolved fluorescence and transient absorption techniques having pico and nanosecond time resolution, in addition to steady-state absorption and fluorescence spectroscopic techniques. Steady-state absorption and fluorescence characteristics of curcumin have been found to be sensitive to the solvent characteristics. Large change (delta mu = 6.1 Debye) in dipole moments due to photoexcitation to the excited singlet state (S1) indicates strong intramolecular charge transfer character of the latter. Curcumin is a weakly fluorescent molecule and the fluorescence decay properties in most of the solvents could be fitted well to a double-exponential decay function. The shorter component having lifetime in the range 50-350 ps and percent contribution of amplitude more than 90% in different solvents may be assigned to the enol form, whereas the longer component, having lifetime in the range 500-1180 ps with less than 10% contribution may be assigned to the di-keto form of curcumin. Our nuclear magnetic resonance study in CDCl3 and dimethyl sulfoxide-D6 also supports the fact that the enol form is present in the solution by more than about 95% in these solvents. Excited singlet (S1) and triplet (T1) absorption spectrum and decay kinetics have been characterized by pico and nanosecond laser flash photolysis. Quantum yield of the triplet is low (phi T < or = 0.12). Both the fluorescence and triplet quantum yields being low (phi f + phi T < 0.18), the photophysics of curcumin is dominated by the energy relaxation mechanism via the internal conversion process.  相似文献   

17.
Ultrafast photolysis of p-biphenylyldiazoethane (BDE) produces an excited state of the diazo compound in acetonitrile, cyclohexane, and methanol with lambdamax = 490 nm and lifetimes of less than 300 fs. The decay of the diazo excited state correlates with the growth of singlet carbene absorption at 360 nm. The optical yields of diazo excited states produced by photolysis of p-biphenylyldiazomethane (BDM) and BDE are the same; however, the optical yield of singlet p-biphenylylmethylcarbene (1BpCMe) is 30-40% less than that of p-biphenylylcarbene (1BpCH) in all three solvents. The results are explained by rearrangement in the excited state (RIES) of BDE to form p-vinylbiphenyl (VB) in parallel with extrusion of nitrogen to form 1BpCMe in reduced yield. This interpretation is consistent with product studies (ethanol-OD in cyclohexane) which indicate that there is an approximately 25% yield of VB that is formed by a mechanism that bypasses the relaxed singlet carbene. The decay of 1BpCMe is biexponential, and that of 1BpCH is monoexponential. This is attributed either to efficient relaxation of vibrationally excited 1BpCMe by 1,2 migration of hydrogen to form VB (minor) or to the increased number of low-frequency vibrational modes provided by the methyl group (major). A methyl group retards the rate of intersystem crossing (ISC), relative to a hydrogen atom, and ISC is more rapid in nonpolar solvents. Reaction of 1BpCMe with methanol is much faster than spin equilibration. Both the lifetime of 1BpCMe and 1BpCH are the same in cyclohexane and in cyclohexane-d12. This demonstrates that spin equilibration is faster than reaction of either carbene with the solvent. The lifetimes of 1BpCMe and 1BpCMe-d3 are the same in cyclohexane. This indicates that 1,2 hydrogen migration of 1BpCMe to form VB is slower than spin equilibration in cyclohexane. In acetonitrile, however, the lifetime of 1BpCMe-d3 is 1.5 times longer than that of 1BpCMe in the same solvent. Thus, in acetonitrile, where ISC is slow, the rate of 1,2 hydrogen shift of 1BpCMe is competitive with ISC. In cyclohexene, the lifetime of 1BpCH is shortened relative to that in cyclohexane. The lifetime of 1BpCMe is the same in cyclohexene and cyclohexane. The data indicate that spin relaxation is slow relative to reaction of 1BpCH with neat alkene but that spin relaxation is fast for 1BpCMe relative to reaction with neat cyclohexene.  相似文献   

18.
The photochemistry of a p-biphenylyl diazo ester (BpCN2CO2CH3) and diazo ketone (BpCN2COCH3) were studied by ultrafast time-resolved UV-vis and IR spectroscopies. The excited states of these diazo compounds were detected and found to decay with lifetimes of less than 300 fs. The diazo ester produces singlet carbene with greater quantum efficiency than the ketone analogue due to competing Wolff rearrangement (WR) in the excited state of the diazo ketone. Carbene BpCCO2CH3 has a singlet-triplet gap that is close to zero in cyclohexane, but the triplet is the ground state. The two spin states are in rapid equilibrium in this solvent relative to reaction with cyclohexane. There is (for a carbene) a slow rate of singlet to triplet intersystem crossing (isc) in this solvent because the orthogonal singlet must rotate to a higher energy orientation prior to isc. In acetonitrile and in dichloromethane BpCCO2CH3 has a singlet ground state. Ketocarbene BpCCOCH3 has a singlet ground state in cyclohexane, in dichloromethane, and in acetonitrile and decays by WR to form a ketene detected by ultrafast IR spectroscopy in these solvents. Ketocarbenes have more stable singlet states, relative to carbene esters, because of the superior conjugation of the filled hybrid orbital of the carbene with the pi system of the carbonyl group, the same factor that makes methyl ketones more acidic than the analogous esters. The rate of WR of BpCCOCH3 is faster in cyclohexane than in dichloromethane and acetonitrile because of intimate solute-solvent interactions between the empty p orbital of the carbene and nonbonding electron pairs of heteroatoms of the solvent. These interactions stabilize the carbene and retard the rate of WR.  相似文献   

19.
The time-resolved formation of the retinyl carbocation from all-trans-retinol and all-trans-retinol acetate was studied by use of picosecond flash photolysis. From both precursors, the retinyl cation is produced by heterolytic C-O bond cleavage in solvents of medium polarity (acetonitrile, tetrahydrofuran, propanol with Reichardt polarity parameter ET(N) approximately 0.5) and high polarity (EtOH, MeOH, TFE, HFIP, ET(N) > 0.6) during the laser pulse (< or =5 ps) where its lifetime is >10 ns. The absorption maximum of the cation at early times (t < 100 ps) is at lambda = 590-600 nm; it shifts to shorter wavelengths (Deltalambda = 5-10 nm) within 1-10 ns. This spectral shift is suggested to be due to contact ion pair --> solvent-separated ion pair --> free-ion transformation. The quantum yield of cation formation phi(cat) is independent of excitation wavelength (213, 266 or 355 nm). Photoheterolysis proceeds via a one-quantum process. In chlorinated solvents, i.e. n-BuCl, 1,2-dichloroethane, chloroform or CCl(4), formation of the retinol radical cation (which is characterized by a peak at 610 nm and further absorption maxima at approximately 840 and approximately 940 nm) by intermolecular electron transfer to the solvent molecules was detected. The radical cation lifetime in all these solvents is 1.5-2 ns, except for CCl(4) where it is 0.25 ns. The formation of the radical cation or cation was not detected in the low polarity solvents: cyclohexane, hexane, dioxane and p-xylene. However, in solvents of medium and high polarity, at high radiation intensities the radical cation may form in addition to the cation (as a result of two-quantum ionization). DFT calculations confirm our experimental results. The rate of retinol S(1) depopulation (k = 0.3-1 x 10(9) s(-1)) is almost independent of the solvent polarity in the range from cyclohexane to methanol. In highly polar solvents (ET(N) > 0.9) the rate increases to (0.5-5) x 10(10) s(-1).  相似文献   

20.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号