首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
对不含官能团的简单芳香酮来说,由于除酮羰基外不具有与催化剂中心金属进行配位的辅助功能基团,因此导致钌-膦配合物催化剂对这类酮加氢的对映选择性不高[1-2].  相似文献   

3.
4.
5.
6.
7.
The highly enantioselective borohydride reduction of aromatic ketones or imines to the corresponding alcohols was developed in the presence of a catalytic amount of an optically active cobalt(II) complex catalyst. This enantioselective reduction is carried out using a precisely premodified borohydride with alcohols such as tetrahydrofurfuryl alcohol, ethanol and methanol. High optical yields are obtained by choosing the appropriate alcohol as modifiers and a suitable beta-ketoiminato ligand of the catalyst. The enantioselective borohydride reduction has been successfully applied to the preparation of optically active 1,3-diols, the stereoselective reduction of diacylferrocenes, and dynamic and/or kinetic resolution of 1,3-dicarbonyl compounds.  相似文献   

8.
9.
The water‐soluble ruthenium(II) complexes [Cp′RuX(PTA)2]Y and [CpRuCl(PPh3)(mPTA)]OTf (Cp′ = Cp, Cp*, X = Cl and Y = nil; or X = MeCN and Y = PF6; PTA = 1,3,5‐triaza‐7‐phosphaadamantane; mPTA = 1‐methyl‐1,3,5‐triaza‐7‐phosphaadamantane) were used as catalyst precursors for the hydrogenation of CO2 and bicarbonate in aqueous solutions, in the absence of amines or other additives, under relatively mild conditions (100 bar H2, 30–80 °C), with moderate activities. Kinetic studies showed that the hydrogenation of HCO3? proceeds without an induction period, and that the rate strongly depends on the pH of the reaction medium. High‐pressure multinuclear NMR spectroscopy revealed that the ruthenium(II) chloride precursors are quantitatively converted into the corresponding hydrides under H2 pressure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
The catalytic activity of the terdentate complex [RuCl(CNN)(dppb)] (A) [dppb=Ph(2)P(CH(2))(4)PPh(2); HCNN=6-(4'-methylphenyl)-2-pyridylmethylamine] in the transfer hydrogenation of acetophenone (S) with 2-propanol has been found to be dependent on the base concentration. The limit rate has been observed when NaOiPr is used in high excess (A/base molar ratio > 10). The amino-isopropoxide species [Ru(OiPr)(CNN)(dppb)] (B), which forms by reaction of A with sodium isopropoxide via displacement of the chloride, is catalytically active. The rate of conversion of acetophenone obeys second-order kinetics v=k[S][B] with the rate constants in the range 218+/-8 (40 degrees C) to 3000+/-70 M(-1) s(-1) (80 degrees C). The activation parameters, evaluated from the Eyring equation are DeltaH(++)=14.0+/-0.2 kcal mol(-1) and DeltaS(++)=-3.2 +/-0.5 eu. In a pre-equilibrium reaction with 2-propanol complex B gives the cationic species [Ru(CNN)(dppb)(HOiPr)](+)[OiPr](-) (C) with K approximately 2x10(-5) M. The hydride species [RuH(CNN)(dppb)] (H), which forms from B via beta-hydrogen elimination process, catalyzes the reduction of S and, importantly, its activity increases by addition of base. The catalytic behavior of the hydride H has been compared to that of the system A/NaOiPr (1:1 molar ratio) and indicates that the two systems are equivalent.  相似文献   

13.
Two beta-receptor agonists (-)-denopamine and (-)-arbutamine were prepared in good yields and enantioselectivities by asymmetric hydrogenation of unprotected amino ketones for the first time by using Rh catalysts bearing electron-donating phosphine ligands. A series of alpha-primary and secondary amino ketones were synthesized and hydrogenated to produce various 1,2-amino alcohols in good yields and with good enantioselectivies. This Rh electron-donating phosphine-catalyzed asymmetric hyderogenation represents one of the most promising and convenient approaches towards the asymmetric synthesis of chiral amino alcohols.  相似文献   

14.
The established standard ketone hydrogenation (abbreviated HY herein) precatalyst [Ru(Cl)(2)((S)-tolbinap)[(S,S)-dpen]] ((S),(S,S)-1) has turned out also to be a precatalyst for ketone transfer hydrogenation (abbreviated TRHY herein) as tested on the substrate acetophenone (3) in iPrOH under standard conditions (45 degrees C, 45 bar H(2) or Ar at atmospheric pressure). HY works at a substrate catalyst ratio (s:c) of up to 10(6) and TRHY at s:c<10(4). Both produce (R)-1-phenylethan-1-ol ((R)-4), but the ee in HY are much higher (78-83 %) than in TRHY (4-62 %). In both modes, iPrOK is needed to generate the active catalysts, and the more there is (1-4500 equiv), the faster the catalytic reactions. The ee is about constant in HY and diminishes in TRHY as more iPrOK is added. The ketone TRHY precatalyst [Ru(Cl)(2)((S,S)-cyP(2)(NH)(2))] ((S,S)-2), established at s:c=200, has also turned out to be a ketone HY precatalyst at up to s:c=10(6), again as tested on 3 in iPrOH under standard conditions. The enantioselectivity is opposite in the two modes and only high in TRHY: with (S,S)-2, one obtains (R)-4 in up to 98 % ee in TRHY as reported and (S)-4 in 20-25 % ee in HY. iPrOK is again required to generate the active catalysts in both modes, and again, the more there is, the faster the catalytic reactions. The ee in TRHY are only high when 0.5-1 equivalents iPrOK are used and diminish when more is added, while the (low) ee is again about constant in HY as more iPrOK is added (0-4500 equiv). The new [Ru(H)(Cl)((S,S)-cyP(2)(NH)(2))] isomers (S,S)-9 A and (S,S)-9 B (mixture, exact structures unknown) are also precatalysts for the TRHY and HY of 3 under the same conditions, and (R)-4 is again produced in TRHY and (S)-4 in HY, but the lower ee shows that in TRHY (S,S)-9 A/(S,S)-9 B do not lead to the same catalysts as (S,S)-2. In contrast, the ee are in accord with (S,S)-9 A/(S,S)-9 B leading to the same catalysts as (S,S)-2 in HY. The kinetic rate law for the HY of 3 in iPrOH and in benzene using (S,S)-9 A/(S,S)-9 B/iPrOK or (S,S)-9 A/(S,S)-9 B/tBuOK is consistent with a fast, reversible addition of 3 to a five-coordinate amidohydride (S,S)-11 to give an (S,S)-11-substrate complex, in competition with the rate-determining addition of H(2) to (S,S)-11 to give a dihydride [Ru(H)(2)((S,S)-cyP(2)(NH)(2))] (S,S)-10, which in turn reacts rapidly with 3 to generate (S)-4 and (S,S)-11. The established achiral ketone TRHY precatalyst [Ru(Cl)(2)(ethP(2)(NH)(2))] (12) has turned out to be also a powerful precatalyst for the HY of 3 in iPrOH at s:c=10(6) and of some other substrates. Response to the presence of iPrOK is as before, except that 12 already functions well without it at up to s:c=10(6).  相似文献   

15.
16.
Amines to an end: Highly optically active α-CF(3) -functionalized amines can be obtained using metal-free reaction conditions. The method involves the transfer hydrogenation of CF(3) -substituted ketimines catalyzed by 1 and reductive amination of CF(3) -substituted ketones. The synthetic utility of this method was demonstrated by the synthesis of a CF(3) analogue of NPS?R-568. PMP=para-methoxyphenyl.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号