首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal degradation of polybutadiene (PBD) in anaerobic atmosphere at 250 °C had been studied by carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) before complete crosslinking. In this investigation four types of low molecular weight PBD with different 1,2-vinyl isomer content had been chosen, then pure and mixed samples of PBD were heated in different time periods. 13C NMR spectra showed that two kinds of crosslinking mechanisms occur that both of them produce methyl groups. The first mechanism is a reaction between 1,2-vinyl isomers of two PBD chains, and the second one occurs between 1,2-vinyl isomer of one chain via methylene carbon of cis or trans isomer in another chain. Also 13C NMR results showed that the presence of 1,2-vinyl isomer in the PBD structure is necessary and without it none of the mentioned reactions will occur. Furthermore isomers sequence is another important parameter which affects crosslinking. Results show that cis or trans isomer which is not adjacent to 1,2-vinyl isomer does not take part in crosslinking reaction. Moreover such cis or trans isomer can take part in second mechanism of crosslinking that 1,2-vinyl isomer was attached from head to cis or trans isomer, thus in this arrangement of isomers second mechanism of crosslinking will become dominant rather than first mechanism of crosslinking.  相似文献   

2.
The ability of hydrogels based on acrylate derivatives of polyethylene glycol (PEG) with different ratios of monomers to swell and degrade, as well as their behavior during heating, have been explored. The possibility to control the swelling and degradation processes in the model medium by varying the ratio of PEG-methacrylate (PEGMA) and PEG-diacrylate (PEGDA) monomers was demonstrated.  相似文献   

3.
The physical and structural properties of acrylamide gels have been characterized by osmotic deswelling, mechanical compression, and x-ray scattering. These properties vary considerably with the concentration of the crosslinking agent bisacrylamide, at fixed total monomers concentration (10% wt/wt water). In particular, changes in the properties appear more prominent at a crosslinking level of about 5-6% (wt bisacrylamide/wt monomers). The compression modulus of as-prepared and swollen gels passes through a maximum at this level of crosslinking. The swelling pressure curves can be separated into osmotic and elastic contributions of the gel network. The elastic part exhibits similar behavior to the compression modulus. The scaling of the osmotic part with the gel concentration varies with the degree of crosslinking, changing from 2.33 to 3.09. This indicates that the solvent power of water decreases with increasing crosslinking level, towards Φ conditions. The scattering patterns from the gels have been analyzed as arising from additive contributions from a homogeneous gel matrix, and embedded heterogeneities having a higher crosslinking density. These heterogeneities become much more prominent at the same level of crosslinking about 5-6%. Hysteresis observed in the sorption/desorption behavior of polyacrylamide gel suggests that further irreversible structural changes may occur at water activities lower than probed by osmotic deswelling. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
5.
6.
Ester-functionalised poly(1-vinylpyrrolidin-2-one) (PVP) oligomers obtained by radical polymerisation in methyl propionate, diethyl malonate and diethyl 2-methylmalonate were characterised by NMR spectroscopy, and MALDI-TOF mass spectrometry. The chain-transfer constants were determined as 5.54 x 10(-4), 1.22 x 10(-3) and 1.70 x 10(-2), respectively, by measuring the variation of the number-average molecular weight on conversion. These values were compared with those of methyl isobutyrate (1.65 x 10(-3)) and ethyl lactate (1.03 x 10(-2)), which had been previously determined. A clear dependence was found on the reactivity of the mobile hydrogen atoms alpha with the ester group. All of the macromolecules carried a single ester function. Therefore, the re-initiation step by the CTA-derived radicals overwhelmingly prevailed over initiation by the primary radicals.  相似文献   

7.
This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2–5 min by a simple two‐solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.

  相似文献   


8.
Functionalizing aliphatic polyester hydrogels with an aniline oligomer is a means of achieving electrically conductive and degradable hydrogels. To lower the aniline oligomer content while maintaining a high conductivity and to overcome the acidic degradation product from polylactide reported in our previous work, a series of electroactive and degradable hydrogels based on polycaprolactone (PCL) hydrogels and carboxyl‐capped aniline pentamer (CCAP) were synthesized by a simple coupling reaction at room temperature. The reaction was carried out between the hydroxyl groups of hydroxyethylmethacrylate in a photopolymerized glycidyl methacrylate (GMA)‐functionalized PCL‐poly(ethylene glycol)‐PCL degradable network and carboxyl group of CCAP, using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide as water‐condensing agent and 4‐dimethylaminopyridine as catalyst. The electroactivity of the hydrogels was verified by cyclic voltammetry, which showed three pairs of redox peaks. The electrical conductivities and swelling ratios of these hydrogels were controlled by the CCAP content, the poly(ethylene glycol) molecular weight in the macromer, and the crosslinking density of the hydrogels. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Macromonomer based poly(ethylene oxide) (PEO) hydrogels were tested with respect to their ability to serve as a template for the survival and the growth of hepatocytes. Two systems were considered : either the surface of preexisting hydrogels, with controlled structural parameters, were seeded with isolated rat hepatocytes or the hepatocytes were dispersed in physiological medium containing the macromonomer/initiator and heated to 37°C. In the first case, cells were examined at given times after spreading over two days. The results were compared to those observed for the dispersion of fibroblasts onto a surface of the same type of hydrogels. The effects of the structure of the hydrogels and its chemical nature on the extent of hepatocyte attachment (or encapsulation) and the morphology were investigated.  相似文献   

10.
11.
The composition, the thermal properties, and the kinetics of the thermo‐oxidative degradation of high‐density polyethylene (HDPE) were studied as a function of the increasing crystalline fraction, which resulted from the selective extraction of the amorphous part, through digestion by immersion in fuming nitric acid (HNO3) for different periods of time. The chemical and thermodynamic changes in HDPE, brought about by digestion in nitric acid for different periods of time, are discussed. Changes in the chemistry and microstructure of the HDPE, as a function of acid treatment for different periods of time, were studied using infra‐red spectroscopy (FTIR), gel permeation chromatography (GPC), and thermal analysis (DSC and TGA), as well as scanning electron microscopy (SEM). These studies were carried out as a function of the extracted amorphous fraction of HDPE samples via digestion in HNO3. These studies showed that in the first stages of the acid chemical attack, the amorphous part first undergoes a chemical modification and then dissolves into the strong acid medium. The total crystalline fraction apparently decreases during the first stages of the chemical attack and then increases as the amorphous part is extracted. TGA results show that as the selective extraction of the amorphous part occurs, there is a displacement of the thermo‐oxidative degradation toward higher temperatures. The kinetics of the thermo‐oxidative degradation as a function of the extraction of the amorphous part was followed according to the Horowitz‐Metzger method, and it was found that as the concentration of the crystalline fraction increases, the activation energy for the thermo‐oxidative degradation increases. SEM studies show that the extraction of the amorphous part does not affect the size of the crystalline lamellar thickness of HDPE. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1906–1915, 2009  相似文献   

12.
Poly(2,2’-disulfonyl-4,4’-benzidine terephthalamide) (PBDT), a kind of liquid-crystalline (LC) molecule, has high molecular weight, negative charge and a semi-rigid structure. The aqueous solution of PBDT shows nematic liquid crystalline state above a critical PBDT concentration, CLC*, of 2 wt%-3wt%. Different from the flexible polyelectrolyte, PBDT shows a variety of self-assembling structures in aqueous solution with and without salt due to the semi-rigid nature and highly charged property. In addition, the hydrogels with ordered structure are developed by polymerizing a cationic monomer N-[3-(N,N-dimethylamino) propyl] acrylamide methyl chloride quarternary (DMAPAA-Q) in the presence of a small amount of PBDT below the CLC*. During the polymerization of cationic monomer, the polycations form a complex with semi-rigid PBDT through electrostatic interaction; these complexes self-assemble into ordered structures that are frozen in the hydrogel. Several different structures, including the anisotropic, dual network-like structure, and cylindrically symmetric structure, with various length scales from micrometer to millimeter, are observed. The hydrogels with ordered liquid crystalline assemblies and particular optical properties should promise applications in many fields, such as in bionics, tissue engineering, and mechano-optical sensors.  相似文献   

13.
Hydrogels based on n‐alkyl methacrylate esters (n‐AMA) of various chain lengths, acrylic acid, and acrylamide crosslinked with 4,4′‐di(methacryloylmino)azobenzene were prepared. Swelling kinetics and the mechanism of degradation in vitro of the hydrogels as well as the mutual relations between both were studied by the immersion of slabs in buffered solutions at pH 7.4. The diffusion of water into the slabs was discussed on the stress‐relaxation model of polymer chains. The results obtained agreed well with Schott's second‐order diffusion kinetics. The gels are degradable by anaerobes in the colon. The results obtained showed that the degradation of networks proceeded via a pore mechanism. The factors influencing the swelling and degradation of the gels include the degree of crosslinking, the lengths of the n‐AMA side chains, and the composition. These hydrogels have the potential for colon‐specific drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3128–3137, 2001  相似文献   

14.
A degradable poly(lactic-co-glycolic acid, LA:GA=80:20)(PLGA) urethral tubular scaffold was fabricated by electrospinning. In order to enhance the mechanical properties, the scaffold was crosslinked with glutaraldehyde. The structure and properties of the crosslinked scaffolds were investigated by the mechanical property testing, scanning electron microscopy(SEM), degradability test in vitro and 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-diphenytetrazo- liumromide(MTT). The results show that the scaffold has the nano-structure. The pore size and the porosity are suitable for cell seeding, growth and extracellular matrix production. Although influenced by the crosslinking slightly, the pore size and the porosity could still support cell proliferation and tissuse formation. The mechanical properties are remarkably increased by the crosslinking of glutaraldehyde, and it could meet the demands of a urethral stent. The scaffold could completely collapse within 70 d. The results of the biocompatibility test show that the PLGA scaffold had no cytotoxicity.  相似文献   

15.
The enzymatically degradable poly(N‐isopropylacrylamide‐co‐acrylic acid) hydrogels were prepared using 4,4‐bis(methacryloylamino)azobenzene (BMAAB) as the crosslinker. It was found that the incorporated N‐isopropylacrylamide (NIPAAm) monomer did not change the enzymatic degradation of hydrogel, but remarkably enhanced the loading of protein drug. The hydrogels exhibited a phase transition temperature between 4°C (refrigerator temperature) and 37°C (human body temperature). Bovine serum albumin (BSA) as a model drug was loaded into the hydrogels by soaking the gels in a pH 7.4 buffer solution at 4°C, where the hydrogel was in a swollen status. The high swelling of hydrogels at 4°C enhanced the loading of BSA (loading capability, ca. 144.5 mg BSA/g gel). The drug was released gradually in the pH 7.4 buffer solution at 37°C, where the hydrogel was in a shrunken state. In contrast, the enzymatic degradation of hydrogels resulted in complete release of BSA in pH 7.4 buffer solution containing the cecal suspension at 37°C (cumulative release: ca. 100 mg BSA/g gel after 4 days). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
An elastin-mimetic polypeptide, (EMM)(7), with the amino-acid sequence GRDPSS [VPGVG VPGKG VPGVG VPGVG VPGEG VPGIG](7) was used for chemical conjugation of various integrin ligands (RGD peptides) to prepare bioactive hydrogels. The chemical approach involved (1) chemical protection of lysine residues with Fmoc or Boc groups, (2) chemical ligation of a protected linear or cyclic RGD ligand, with or without a hexanoic-acid spacer to the glutamic acid residue, (3) deprotection of the lysine functionalities and the RGD moieties and (4) cross-linking to form a bioactive hydrogel. (1)H NMR spectroscopy was used to quantify the multiple steps in the reaction. The chemical protection was found to be between 65 and 93% for Fmoc and Boc, respectively. The ligands studied included linear RGD cell-binding [H-FGRGDS-OH (1-l-RGD), H-Ahx--FGRGDS-OH (2-Ahx-FGRGDS) and a cyclic -H(2)N-(CH(2))(6)COHN-cyclo(-RGDfK-) (H-Ahx-c(-RGDfK-)) peptide also with a hexanoic-acid spacer. Cell adhesion with mouse osteoblast cells was dependent on the ligand type, ligand density and the use of a spacer.  相似文献   

17.
Fluorescent hydrogels have promising applications in biomedical and engineering fields. However, they are usually mechanically weak. Here, we report a fluorescent composite hydrogel with high toughness, which is facilely prepared by solution casting ethanol solution of poly(hydroxyurethane) (PHU) and poly(stearyl acrylate-co-acrylic acid) (P[SA-co-AAc]) followed by swelling the casted film in water. The composite hydrogels with water content of 62–78 wt% possess remarkable mechanical performances, with tensile breaking stress of 0.3–1.1 MPa, breaking strain of 280%–400%, Young's modulus of 0.2–0.7 MPa, and tearing fracture energy of 1250–2630 J/m2. The high toughness is attributed to the effective energy dissipation of the network with hydrophobic association of SA units and hydrogen bonds between PHU and P(SA-co-AAc) as the physical crosslinks. The intense aggregation of carbamates and the formation of carbamate clusters through intra- and intermolecular hydrogen bonds endow the composite hydrogel with strong fluorescence. These hydrogels with high toughness and strong fluorescence should find applications in flexible electronics, information display, and biomedical devices.  相似文献   

18.
The semi‐IPN hydrogels consisting of poly(methacrylic acid) and guar gum (GG) are prepared at room temperature using water as solvent. 5‐aminosalicylic acid (5‐ASA) is entrapped in the hydrogel in the synthesis of hydrogel and all entrapment efficiencies are found above 85%. The hydrogel shows excellent pH‐sensitivity. It exhibited minimum swelling in an acidic pH medium through the formation of a complex hydrogen‐bonded structure and maximal swelling due to the electrostatic repulsion due to the ionization of the carboxylic groups in pH 7.4 medium. The degradation in vitro shows that the degree of degradation (R%) depended on the concentration of cross‐linking agent and content of GG. The hydrogel shows a minimum release of 5‐ASA due to the complex hydrogen bonded structure of the hydrogels in the medium of pH 2.2. The enzymatic degradation of hydrogels by cecal bacteria can accelerate the release of 5‐ASA entrapped in the hydrogel in pH 7.4 medium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Methacrylate‐based hydrogels, such as homo‐ and copolymers of 2‐hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3‐dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE‐19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1781–1789  相似文献   

20.
Three different techniques have been applied to the evaluation of the degree of cross-linking of superabsorbent cellulose-based hydrogels obtained from water solutions of carboxymethylcellulose sodium salt (CMCNa) and hydroxyethylcellulose (HEC), chemically cross-linked with divinyl sulfone. These polyelectrolyte hydrogels are biodegradable and have the same sorption capacity as acrylate-based superabsorbents on the market. A 13C solid state NMR analysis was carried out on dry samples of hydrogel to obtain the degree of cross-linking, an important parameter that affects the swelling and mechanical properties of a hydrogel. Dynamic mechanical analysis was performed during the hydrogel cross-linking using a parallel plate rheometer under oscillatory deformations in order to monitor the evolution of the hydrogel viscoelastic properties during the synthesis. The value of |G*| and the slope of the stress-deformation ratio plots from uniaxial compression tests were used to evaluate the elastically effective degree of cross-linking according to classical rubber elasticity theory. Moreover, a dynamic mechanical analysis was carried out on cross-linked hydrogels at different degrees of swelling in order to investigate the influence of the swelling on the mechanical properties and the application of rubber elasticity theory to swollen hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号