首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtain some characterizations of linear operators that preserve the term rank of Boolean matrices. That is, a linear operator over Boolean matrices preserves the term rank if and only if it preserves the term ranks 1 and k(≠1) if and only if it preserves the term ranks 2 and l(≠2). Other characterizations of term rank preservers are given.  相似文献   

2.
The scrambling index of an n × n primitive Boolean matrix A is the smallest positive integer k such that A k (A T) k = J, where A T denotes the transpose of A and J denotes the n×n all ones matrix. For an m×n Boolean matrix M, its Boolean rank b(M) is the smallest positive integer b such that M = AB for some m × b Boolean matrix A and b×n Boolean matrix B. In 2009, M. Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling index of an n×n primitive matrix M in terms of its Boolean rank b(M), and they also characterized all primitive matrices that achieve the upper bound. In this paper, we characterize primitive Boolean matrices that achieve the second largest scrambling index in terms of their Boolean rank.  相似文献   

3.
Let ?+ be the semiring of all nonnegative integers and A an m × n matrix over ?+. The rank of A is the smallest k such that A can be factored as an m × k matrix times a k×n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A. For A with isolation number k, we investigate the possible values of the rank of A and the Boolean rank of the support of A. So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is 1 or 2 only. We also determine a special type of m×n matrices whose isolation number is m. That is, those matrices are permutationally equivalent to a matrix A whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.  相似文献   

4.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

5.
Let B be the binary Boolean algebra. The Boolean rank, or factorization rank, of a matrix A in Mm,n(B) is the smallest k such that A can be factored as an m×k times a k×n matrix. The isolation number of a matrix, A, is the largest number of entries equal to 1 in the matrix such that no two ones are in the same row, no two ones are in the same column, and no two ones are in a submatrix of A of the form 1111. It is known that the isolation number of A is always at most the Boolean rank. This paper investigates for each k, if the isolation number of A is k what are some of the possible values of the Boolean rank of A.  相似文献   

6.
Analogues of characterizations of rank-preserving operators on field-valued matrices are determined for matrices witheentries in certain structures S contained in the nonnegative reals. For example, if S is the set of nonnegative members of a real unique factorization domain (e.g. the nonnegative reals or the nonnegative integers), M is the set of m×n matrices with entries in S, and min(m,n)?4, then a “linear” operator on M preserves the “rank” of each matrix in M if and only if it preserves the ranks of those matrices in M of ranks 1, 2, and 4. Notions of rank and linearity are defined analogously to the field-valued concepts. Other characterizations of rank-preserving operators for matrices over these and other structures S are also given.  相似文献   

7.
Let A, B, C be n×n matrices of zeros and ones. Using Boolean addition and multiplication, we say that A is prime if it is not a permutation matrix and if A=BC implies that B or C must be a permutation matrix. Conditions sufficient for a matrix to be prime are provided, and a characterization of primes in terms of a nation of rank is given. Finally, an order property of primes is used to obtain a result on prime factors.  相似文献   

8.
Let T be a linear transformation on the set of m × n matrices with entries in an algebraically closed field. If T maps the set of all matrices whose rank is k into itself, and ifn?3k2, then the rank of A is the rank of T(A) for every m × n matrix.  相似文献   

9.
The scrambling index of an n×n primitive matrix A is the smallest positive integer k such that Ak(At)k=J, where At denotes the transpose of A and J denotes the n×n all ones matrix. For an m×n Boolean matrix M, its Boolean rank b(M) is the smallest positive integer b such that M=AB for some m×b Boolean matrix A and b×n Boolean matrix B. In this paper, we give an upper bound on the scrambling index of an n×n primitive matrix M in terms of its Boolean rank b(M). Furthermore we characterize all primitive matrices that achieve the upper bound.  相似文献   

10.
For an n×n Boolean matrix R, let AR={n×n matrices A over a field F such that if rij=0 then aij=0}. We show that a collection AR〈1〉,…,ARk generates all n×n matrices over F if and only if the matrix J all of whose entries are 1 can be expressed as a Boolean product of Hall matrices from the set {R〈1〉,…,Rk〉}. We show that J can be expressed as a product of Hall matrices Ri〉 if and only if ΣRi〉?Ri〉 is primitive.  相似文献   

11.
It is shown that if A is a pq×r matrix such that each of the horizontal plane sections of A has full term rank, then the plane term rank of A is greater than m?√m where m= min {p,q,r}. In particular, if A is a three dimensional line stochastic matrix of order n, then the plane term rank of A is greater than n?√n.  相似文献   

12.
Let {B1,…,Bn} be a set of n rank one n×n row stochastic matrices. The next two statements are equivalent: (1) If A is an n×n nonnegative matrix, then 1 is an eigenvalue ofBkA for each k=1,…,n if and only if A is row stochastic. (2) The n×n row stochastic matrix S whose kth row is a row of Bk for k=1,…,n is nonsingular. For any set {B1, B2,…, Bp} of fewer than n row stochastic matrices of order n×n and of any rank, there exists a nonnegative n×n matrix A which is not row stochastic such that 1 is eigenvalue of every BkA, k=1,…,p.  相似文献   

13.
Let U k be the general Boolean algebra and T a linear operator on M m,n (U k ). If for any A in M m,n (U k ) (M n (U k ), respectively), A is regular (invertible, respectively) if and only if T(A) is regular (invertible, respectively), then T is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over U k . Meanwhile, noting that a general Boolean algebra U k is isomorphic to a finite direct product of binary Boolean algebras, we also give some characterizations of linear operators that strongly preserve regular (invertible, respectively) matrices over 169-7 k from another point of view.  相似文献   

14.
We study the extent to which certain theorems on linear operators on field-valued matrices carry over to linear operators on Boolean matrices. We obtain analogues and near analogues of several such theorems. One of these leads us to consider linear spaces of m × n Boolean matrices whose nonzero members all have Boolean rank 1. We obtain a structure theorem for such spaces that enables us to determine the maximum Boolean dimension of such spaces and their maximum cardinality.  相似文献   

15.
Let GMr(A) be the row Gondran–Minoux rank of a matrix, GMc(A) be the column Gondran–Minoux rank, and d(A) be the determinantal rank, respectively. The following problem was posed by M. Akian, S. Gaubert, and A. Guterman: Find the minimal numbers m and n such that there exists an (m × n)-matrix B with different row and column Gondran–Minoux ranks. We prove that in the case GMr(B) > GMc(B) the minimal m and n are equal to 5 and 6, respectively, and in the case GMc(B) > GMr(B) the numbers m = 6 and n = 5 are minimal. An example of a matrix $ A \in {\mathcal{M}_{5 \times 6}}\left( {{\mathbb{R}_{\max }}} \right) $ such that GMr(A) = GMc(A t) = 5 and GMc(A) = GMr(A t) = 4 is provided. It is proved that p = 5 and q = 6 are the minimal numbers such that there exists an (p×q)-matrix with different row Gondran–Minoux and determinantal ranks.  相似文献   

16.
Let Mm, n(F) denote the set of all m×n matrices over the algebraically closed field F. Let T denote a linear transformation, T:Mm, n(F)→Mm, n(F). Theorem: If max(m, n)?2k?2, k?1, and T preserves rank k matrices [i.e.?(A)=k implies ?(T(A))=k], then there exist nonsingular m×m and n×n matrices U and V respectively such that either (i) T:AUAV for all A?Mm, n(F), or (ii) m=n and T:AUAtV for all A?Mn(F), where At denotes the transpose of A.  相似文献   

17.
A real symmetric n × n matrix Q is A-conditionally positivesemidefinite, where A is a given m × n matrix, if xQx?0 whenever Ax?0, and is A-conditionally positive definite if strict inequality holds except when x=0. When A is the identity matrix these notions reduce to the well-studied notions of copositivity and strict copositivity respectively. This paper presents finite criteria, involving only the solution of sets of linear equations constructed from the matrices Q,A, for testing both types of conditional definiteness. These criteria generalize known facts about copositive matrices and, when Q is invertible and all row submatrices of A have maximal rank, can be very elegantly stated in terms of Schur complements of the matrix AQ-1A′.  相似文献   

18.
Let b = b(A) be the Boolean rank of an n × n primitive Boolean matrix A and exp(A) be the exponent of A. Then exp(A) ? (b − 1)2 + 2, and the matrices for which equality occurs have been determined in [D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101-116]. In this paper, we show that for each 3 ? b ? n − 1, there are n × n primitive Boolean matrices A with b(A) = b such that exp(A) = (b − 1)2 + 1, and we explicitly describe all such matrices.  相似文献   

19.
The index of maximum density of a Boolean (or nonnegative) matrix A is defined as the least positive integer h=h(A) such that the number of ones (or positive entries) in Ah is maximized in all powers of A. Our main results are the following: (1) Let IBn,p be the set of n × n irreducible Boolean matrices with period p. We give the largest value of h(A) for A ϵ IBn,p. (2) Let Hn,p be the set of h(A) for A ϵ IBn,p. We exhibit a system of gaps in Hn,p. (3) We completely determine the set of h(A) for all n × n symmetric irreducible Boolean matrices.  相似文献   

20.
A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set {+,?, 0} ({+, 0}, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix A is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of A. Using a correspondence between sign patterns with minimum rank r ≥ 2 and point-hyperplane configurations in Rr?1 and Steinitz’s theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every d-polytope determines a nonnegative sign pattern with minimum rank d + 1 that has a (d + 1) × (d + 1) triangular submatrix with all diagonal entries positive. It is also shown that there are at most min{3m, 3n} zero entries in any condensed nonnegative m × n sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号