首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retention (migration) behaviour of various barbiturates, phenylurea and triazine herbicides in micellar electrokinetic chromatography (MEKC) with uncoated fused-silica capillaries was compared with the behaviour in micellar electrokinetic chromatography with reduced electroosmotic flow (RF-MEKC) using capillaries modified with linear polyacrylamide. The error in the values of the retention factors caused by the neglection of the contribution of the electroosmotic flow in RF-MEKC was investigated and a method for correcting this error was suggested. The retention was characterised using the lipophilic and polar indices to characterise and to predict the retention as a function of the concentration of the surfactant (sodium dodecylsulphate) in the running buffer in MEKC and in RF-MEKC. Homologous series of n-alkylbenzenes and of n-alkan-2-ones were compared as the standard sets for the calibration of the retention (migration) index scale. The values of the lipophilic indices of a given solute measured in reversed-phase HPLC, MEKC and RF-MEKC are close to each other. Under ideal MEKC conditions, the values of the polarity indices are close to one for various sample solutes. However, for partially ionised compounds such as weakly acidic barbiturates, where the contribution of the electrophoretic migration is significant, the values of the polarity indices are significantly lower than one. Optimum conditions for separations of mixtures of triazine and phenylurea herbicides and of barbiturates using various techniques tested were compared.  相似文献   

2.
Summary The use of theoretically calculated molecular properties as predictors for retention in reversed-phase HPLC has been explored. HPLC retention times have been measured for a series of 47 substituted aromatic molecules in three solvent mixtures and steric and electronic properties of these compounds have been derived using semi-empirical molecular orbital and empirical theoretical methods. A subset of the experimental data (a training set) was used to derive property-retention time relationships and the remaining data were then used to test the predictive capability of the methods.Good retention time prediction was possible using derived regression equations for individual solvents and after including solvent parameters it was possible to predict retention for all solvents using a single equation. This method showed that the most useful properties were calculated log P and the calculated dipole moment of the solutes, and the calculated solvent polarisability. In addition, 90% of the data were used to train an artificial neural network and the remaining 10% of the data used to test the network; excellent prediction was obtained, the neural network approach being as successful as the regression analysis.  相似文献   

3.
4.
5.
6.
Retention index (I), rather than retention factor (k), was found to be a more reasonable parameter for comparison of the relative affinity of disubstituted benzenes in MEEKC and MEKC, due to independent of I with the SDS surfactant concentration. MEKC and MEEKC may give similar or different I values, depending on types of moieties. With known I and Kow for alkylbenzenes as references in MEKC and MEEKC, the values of Kow for disubstituted benzenes can be estimated from the observed I values, where Kow is the octanol–water distribution constant. In addition, a group additive approach can be used to predict I for disubstituted benzenes with different moieties from the average observed I for the disubstituted benzenes with same moieties. However, electronic effects and/or intramolecular interaction may result in the different observed I from prediction.  相似文献   

7.
Vapour pressures of organic materials can be predicted to high levels of accuracy using cohesive energies and solubility parameters derived from molecular dynamics simulations that use good forcefields. It is found that over 90% of the correlation with vapour pressure is accounted for by a single cross term involving the product of either the molecular weight or molar volume of a molecule and its cohesive energy density.  相似文献   

8.
Z Liu  H Zou  M Ye  J Ni  Y Zhang 《Electrophoresis》1999,20(14):2898-2908
Influences of seven organic modifiers, including urea, methanol (MeOH), dioxane (DIO), tetrahydrofuran (THF), acetonitrile (ACN), 1-propanol (1-PrOH) and 2-propanol (2-PrOH), on the solute retention and the electrokinetic migrations in micellar electrokinetic capillary chromatography (MEKC) are investigated with sodium dodecyl sulfate (SDS) micelle as pseudostationary phase. It is observed that in the limited concentration ranges used in the MEKC systems the effect of organic modifier concentration on the retention can be described by the equation logk1=logk1w-SC for most binary aqueous-organic buffer, but deviations from this retention equation are observed at ACN and particularly THF as organic modifiers. With parameter S as a measure of the elutropic strength, the elutropic strength of the organic modifiers is found to follow a general order urea 相似文献   

9.
10.
11.
Retention indices in micellar electrokinetic chromatography   总被引:1,自引:0,他引:1  
The use of retention indices in micellar electrokinetic chromatography (MEKC) is evaluated both from a theoretical and a practical point of view. Fundamental equations for the determination of retention indices in MEKC are described, showing that retention indices are independent of the surfactant concentration. Possibilities as well as limitations of different homologous series as reference standards are described. In addition, the practical application of retention indices for identification, investigation of solute-micelle interactions, characterization and classification of pseudo-stationary phases and determination of solute lipophilicity are discussed.  相似文献   

12.
Recent advances in micellar electrokinetic chromatography   总被引:2,自引:0,他引:2  
This review contains nearly 200 reference citations, and covers advances in electrokinetic capillary chromatography based on micelles, including stabilized micelle complexes, polymeric and mixed micelles from 2003-2004. Detection strategies, analyte determinations, and applications in micellar electrokinetic capillary chromatography (MEKC) are discussed. Information regarding methods of analyte concentration, analyte specific analyses, and nonstandard micelles has been summarized in tabular form to provide a means of rapid access to information pertinent to the reader.  相似文献   

13.
Micellar electrokinetic chromatography (MEKC), which can separate neutral analytes as well as charged analytes by the capillary electrophoretic technique, was developed in 1982 and the first paper was published in 1984. The authors’ group concentrated their effort into the characterization of MEKC as a separation technique until early 1990s. Most issues in MEKC separations were successfully solved and wide applicability of MEKC was verified in 1990s. In particular, sweeping, an on-line sample preconcentration technique, was very successful for the concentration of neutral analyte as well as ionic ones. In this paper, our studies on MEKC will be summarized from the personal viewpoint of the author.  相似文献   

14.
A comparison of separations conducted in sodium dodecyl sulfate (SDS) and SDS modified with Brij 35 indicates that selectivity, in Micellar Electrokinetic Chromatography (MEKC), is governed by the composition of the micellar phase. Beyond selectivity optimization, resolution may be improved by increasing efficiency or decreasing electroosmotic flow. Of these approaches, increasing capillary length (to improve efficiency) should be a more time effective means of improving separation.  相似文献   

15.
16.
Summary Computer-assisted procedures for the one-parameter optimization of the surfactant concentration and the concentration of urea or D-glucose as modifiers in micellar electrokinetic capillary chromatography have been developed. These procedures permit a rapid optimization of one parameter on the basis of only two experiments. Predicted values are compared to empirically obtained optimum values. The influence of the modifier concentration on the critical micelle concentration of sodium dodecyl sulfate was experimentally determined in buffers commonly employed in micellar electrokinetic chromatography. The alteration of retention factors of solutes caused by the influence of urea addition on the critical micelle concentration of sodium dodecyl sulfate was calculated under the assumption of constant distribution coefficients and compared to experimentally obtained values. It was demonstrated that the addition of urea or of D-glucose does not alter the phase ratio substantially.  相似文献   

17.
Kuo CH  Lee SS  Chang HY  Sun SW 《Electrophoresis》2003,24(6):1047-1053
Micellar electrokinetic chromatography (MEKC) was used to separate twelve lignan compounds originating from Phyllanthus plants. To increase the reliability of peak identification, two micellar systems, the sodium dodecyl sulfate (SDS) and sodium deoxycholate (SDC) systems, were investigated. Because of the high lipophilicity of the lignan analytes, tetrahydrofuran was added to the SDS micellar system to increase its separating ability. In contrast to SDS system, no organic solvent was needed with SDC micelles. Both micellar systems gave a satisfactory separation within a reasonable analysis time. On considering accuracy for quantitation, the SDS method was validated and then used to determine the content of the lignans in two Phyllanthus plants. The selectivity (elution order of the lignans) was significantly different between the SDS and SDC micellar systems. Retention in SDC-MEKC seemed to be dominated by the hydrophobicity of the lignan solutes, while in SDS-MEKC, retention was greatly influenced by hydrogen bonding interactions.  相似文献   

18.
The potential of micellar electrokinetic chromatography (MEKC) for the profiling of cocaine samples is described. An MEKC system containing sodium dodecyl sulfate (SDS) and methanol was optimized using a test mixture of cocaine, its common impurities (benzoylecgonine, norcocaine, tropacocaine, and trans-cinnamoylcocaine), and several degradation products. The effect of pH, percentage modifier, and concentration surfactant on the separation has been investigated. The optimal separation buffer for cocaine samples consisted of 75 mM SDS, 17.5% methanol, and 25 mM borate (pH 8.3) and was well suited to separate components of diverse polarity in one run. Various cocaine seizures have been analyzed with the MEKC system and their signatures were compared. The electrokinetic chromatograms obtained were characteristic, and differences and similarities among the samples could easily be observed. Several impurities were identified in the samples by means of migration times and comparison of recorded and library UV spectra. The composition of the samples was determined semiquantitatively using relative corrected peak areas.  相似文献   

19.
The limited peak capacity of neutral compounds in micellar electrokinetic chromatography (MEKC) causes peak overlap in a simple 38-compound sample that is predicted by statistical-overlap theory (SOT). The low-concentration sample was prepared in-house from several compound classes to span the entire migration-time range and was resolved partially in a pH=7 phosphate buffer containing 50 mM sodium dodecyl sulfate. Peaks, singlets, doublets, and other multiplets were identified on the basis of known migration times and were counted at 13 voltages spanning 4 – 26 kV. These numbers agreed well with predictions of a simple SOT based on the assumption of an inhomogeneous Poisson distribution of migration times. Because the dispersion theory of MEKC is simple, the standard deviations of single-component peaks were modeled theoretically. As part of a new way to implement SOT, probability distributions of the numbers of peaks, singlets, and so on, were computed by Monte Carlo simulation. These distributions contain all theoretical information on peak multiplicity predictable by SOT and were used to evaluate the agreement between experiment and theory. The peak capacity of MEKC was calculated numerically and substituted into the simplest equations in SOT, affirming that peak overlap arises from limited peak capacity.  相似文献   

20.
In this study, enantioseparations of five phenothiazines in cyclodextrin (CD)-modified micellar electrokinetic chromatography (MEKC) were investigated using a citrate buffer containing tetradecyltrimethylammonium bromide (TTAB) as a cationic surfactant at low pH. Beta-cyclodextrin (beta-CD) and hydroxylpropyl-beta-CD (HP-beta-CD) were selected as chiral selectors. The results indicate that the separation window is greatly enlarged by beta-CD concentration and that the separability and selectivity of phenothiazines are remarkably influenced by the concentrations of both beta-CD and TTAB, as well as buffer pH. The interaction of thioridazine with beta-CDs is considerably reduced in the presence of TTAB micelles due to competitive complexation of thioridazine with TTAB micelles, which is pH-dependent. As a result, effective enantioseparation of thioridazine is simultaneously achievable with that of trimeprazine and promethazine or ethopropazine in MEKC with addition of either beta-CD or HP-beta-CD, respectively, to a micellar citrate buffer containing TTAB at pH 3.5. Better enantioresolution of thioridazine in MEKC than in capillary zone electrophoresis can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号