首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
 Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer, we used the Hertz model to calculate the Young’s modulus of the polymer layer in the confinement of AFM experiments with silicon nitride tip with a radius of curvature of R » 50 nm and a glass sphere attached to the cantilever R = 5 mm. Since there is no visible indentation of the layer in the AFM experiments, the layer is either penetrated very easily, or the indentation is too small to be seen in a force curve. The latter would be the case for a polymer layer with a Young’s modulus above 4 ´ 108 Pa in case of an experiment with a silicon nitride tip and 4 ´ 105 Pa in case of a glass sphere.  相似文献   

2.
Two multi-nuclear titanium complexes [Ti(η5-Cp*)Cl(μ-O)]3 (1) and [(η5-Cp*TiCl)(μ-O)2(η5-Cp*Ti)2(μ-O)(μ-O)2]2Ti (Cp* = C5Me5) (2) have been investigated as the precatalysts for syndiospecific polymerization of styrene. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, complexes 1 and 2 display much higher catalytic activities towards styrene polymerization, and produce the higher molecular weight polystyrenes with higher syndiotacticities and melting temperatures (Tm) than the mother complex Cp*TiCl3 does when the polymerization temperature is above 70℃and the Al/Ti molar ratio is in the low range especially.  相似文献   

3.
Sulfonylbis(1,4-phenylene)bis(sulfamic acid) (SPSA) is easily prepared and recognized as a new heterogeneous catalyst by the reaction of 4,4′-sulfonyldianiline with chlorosulfonic acid. This reagent was used for the synthesis of the mono- and bis-chromene derivatives. All reactions were performed under mild reaction conditions in high to excellent yields. The advantages of using the SPSA as a heterogeneous catalyst in these reactions are: being environmentally friendly, low cost, commercially availability and easy to separate from the mixture of the reaction and high reusable catalyst. Using this catalyst, results in acceptable reaction time and high yields with high purity of the obtained products without utilizing any organic solvents. The catalyst was characterized by FT-IR, 1H NMR, 13C NMR, mass and TGA studies. All the products were characterized by FT-IR, 1H, 13C NMR, HRMS, melting point and elemental analyses.  相似文献   

4.
We developed a fluorescent assay to conveniently determine the kinetics of protein sulfation, which is essential for understanding interface between protein sulfation and protein–protein interactions. Tyrosylprotein sulfotransferase (TPST) catalyzes protein sulfation using 3′-phosphate 5′-phosphosulfate (PAPS) as sulfuryl group donor. In this report, PAPS was regenerated following sulfuryl group transfer between adenosine 3′,5′-diphosphate and 4-methylumbelliferyl sulfate catalyzed by phenol sulfotransferase (PST). The TPST and PST coupled enzyme platform continuously generated fluorescent 4-methylumbelliferone (MU) that was used to real-time monitor protein sulfation. Using a recombinant N utilization substance protein A fused Drosophila melanogaster tyrosylprotein sulfotransferase, we demonstrated that the activity of TPST determined through MU fluorescence directly correlated with protein sulfation. Kinetic constants obtained with small P-selectin glycoprotein ligand-1 peptide (PSGL-1 peptide, MW 1541) or its large glutathione S-transferase fusion protein (GST-PSGL-1, MW 27833) exhibited significant variation. This assay can be further developed to a high-throughput method for the characterization of TPSTs and for the identification and screening of their protein substrates.
Figure
Fluorophore to report the progress of post-translational protein tyrosine sulfation: Protein sulfation was continuously monitored through a PAPS regeneration system that produced MU (fluorophore) and PAPS (sulfuryl group donor) from MUS and PAP. MU is a fluorescent reporter and PAPS is one of the substrates of TPST.  相似文献   

5.
Abstract

N-Phenylmorpholine (1) reacted with chlorosulfonic acid to give the p-sulfonyl chloride (2), which was characterized as the sulfonamides (35). Benzothiazole (6) was converted into the sulfonyl chloride (7) by sequential treatment with hot chlorosulfonic acid and thionyl chloride. Reaction of (7) with amines afforded the derivatives (810); NMR spectral analysis of the dimethylamide (8) indicated that it was a mixture of the 4- and 7-isomers. Chlorosulfonation of 2-methylbenzothiazole (11) was achieved by heating with chlorosulfonic acid with or without thionyl chloride. The chloride (12) was converted into amides (1319). Study of the NMR spectra indicated that mixtures of the 5- and 6-isomers were formed. 2,4,5-Triphenyloxazole (20) reacted with chlorosulfonic acid to give either the mono-(21), bis (23) or bis-tris sulfonylchlorides (23, 34); these were converted into 14 sulfonamides. 2-(p-Nitrophenyl)-4,5-diphenyloxazole (41) reacted with hot chlorosulfonic acid to give the bis-sulfonyl chloride (42), characterized as the dimethylsulfonamide (43). Attempts to form the pure monosulfonyl chloride and to mono nitrate 2,4,5-triphenyloxazole (20) were unsuccessful.  相似文献   

6.
A simple and efficient procedure for the preparation of silica-bonded N-propyl sulfamic acid (SBNPSA) by the reaction of 3-aminopropylsilica (1) and chlorosulfonic acid in chloroform is described. This solid acid is employed as a new catalyst for the formylation of alcohols and amines with ethyl formate under mild and heterogeneous conditions at room temperature with good to excellent yields. Also, SBNPSA catalyzed acetylation of various alcohols and amines with acetic anhydride at room temperature.  相似文献   

7.
8.
9.
10.
A simple and efficient procedure for the preparation of silica-bonded S-sulfonic acid (SBSSA) by reaction of 3-mercaptopropylsilica (MPS) and chlorosulfonic acid in chloroform is described. This solid acid is employed as a recyclable catalyst for the synthesis of 1,1-diacetates from aromatic aldehydes and acetic anhydride under mild and solvent-free conditions at room temperature.  相似文献   

11.
12.
Abstract

Succinimide-N-sulfonic acid (SuSA) is easily prepared by the reaction of succinimide with chlorosulfonic acid. This reagent is able to efficiently catalyze the chemoselective trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS). All reactions were performed under mild reaction conditions, giving excellent yields.

GRAPHICAL ABSTRACT   相似文献   

13.
    
It has been shown that endo--1,6-glucanases from marine molluscs perform a transglycosylation reaction. When o-nitrophenyl -D-glucopyranoside (Np glucoside) was used as acceptor, among the newly formed products Np gentiobioside, -trioside, and -tetraoside with a total yield of up to 20% on the initial Np glucoside were detected.Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 469–471, July–August, 1986.  相似文献   

14.
Starting with 1,2,4,6-tetra-O-acetyl-3-O-dodecyl-β-d-glucose (1), mixed alkyl-perfluoroalkyl substituted sugar derivatives with an anomeric perfluoroalkylthio group and an O-alkyl group in the 3 position were synthesized via 2,4,6-tri-O-acetyl-3-O-dodecyl-1-thio-β-d-glucose (4). The latter was S-perfluorohexylated with 1-iodoperfluorohexane in a dithionite initiated reaction yielding perfluorohexyl 2,4,6-tri-O-acetyl-3-O-dodecyl-1-thio-β-d-glucopyranoside (5). Experiments with the aim compound 5 completely to deacetylate ended in surprising results. Thus, methanolic methanolate solution produced the orthoester 7 as the result of α-fluoride replacement by methoxy groups as well as the methyl glucoside 8 as the result of a transglycosylation reaction. Alumina supported cesium fluoride cleaved regioselectively the two acetyl groups in the 4- and 6-position yielding perfluorohexyl 2-O-acetyl-3-O-dodecyl-1-thio-β-d-glucopyranoside (10). A complete deacetylation of 5 to amphiphile 11 succeeded only with methanolic tert-butanolate. However, the products 8 and 10 were likewise formed.  相似文献   

15.
Zinc bromide (ZnBr2) under microwave irradiation efficiently catalyzed the Ferrier reaction of hindered phenols and alcohols to afford the corresponding α-2,3-unsaturated glucoside acetates in good yields and with good stereoselectivity. The reaction affords a facile access to new 2,3-dideoxyglucosides of important phenolic and alcoholic constituents of spices.  相似文献   

16.
Abstract  Saccharin sulfonic acid was easily prepared by the reaction of saccharin with neat chlorosulfonic acid at room temperature. This reagent is efficiently able to catalyze the chemoselective trimethylsilylation of alcohols with hexamethyldisilazane in the presence of amines and thiols. Graphical abstract     相似文献   

17.
Intrinsically glucoside‐based microspheres are prepared in olive oil via a water in oil inverse suspension polymerization. The microspheres are characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) microscopy, and X‐ray photoelectron spectroscopy (XPS), evidencing the intrinsic glucose character of the spheres. A novel boronic acid fluorescent molecule was subsequently conjugated to the microspheres in an aqueous environment, exhibiting the spatial and uniform distribution of glucoside as well as the affinity of the microspheres to bind with boron, evidenced via fluorescence spectroscopy measurements.

  相似文献   


18.
Three new alkaloids, daphcalycinosidines A (1) and B (2) and daphcalycic acid (3) have been isolated from the seeds of Daphniphyllum calycinum. The structures and relative stereochemistries were determined on the basis of spectral studies including 2D NMR, mass spectrometry and chemical transformations. Structures 1 and 2 are characterized by an iridoid glucoside moiety linked to new Daphniphyllum alkaloid moieties.  相似文献   

19.
Sulfonated Honeycomb Coral (HC-SO3H), has been synthesized from the reaction of Honeycomb Coral with chlorosulfonic acid as sulfonating agent. The as-synthesized catalyst was characterized via XRF, FT-IR, TGA, SEM–EDS, XRD, BET and pH analysis. The superior catalytic activity of HC-SO3H was investigated for the synthesis of 4,4′-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives through the one-pot pseudo-five component reactions. The main advantages of this protocol include simple procedure, excellent yields and short reaction times besides the non-toxicity, high stability and reusability of the catalyst.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号