首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文采用渐进积分法研究了超静定梁?柱的弯曲问题. 首先建立超静定梁?柱的四阶挠度微分方程, 考虑到边界条件和连续光滑条件, 采用连续分段独立一体化积分法求解得到了挠度的精确解析解. 为了满足工程设计需要, 构造了超静定梁?柱的四阶挠度微分迭代方程, 选取无轴向力作用时超静定梁的挠曲线作为梁的初函数, 将初函数代入梁的四阶挠度微分迭代方程进行积分, 利用边界条件和连续光滑条件确定积分常数, 得到下一次迭代挠度函数, 依次进行迭代积分运算. 计算出了最大挠度、最大转角和最大弯矩等用轴向力放大系数表示的多项式解析函数解. 本文选取了两种边界条件下受分布力作用的超静定梁?柱进行分析, 计算结果表明, 当超静定梁?柱所受的轴向力小于欧拉临界力的1/2时, 迭代六次误差就可以控制在1%以内; 不仅梁?柱最大位移和最大内力的大小随轴向力的增大而增大, 而且其位置也随轴向力的增大而发生迁移. 本文的研究对揭示轴向力对超静定梁?柱变形和内力的影响有重要意义, 为超静定梁?柱的实际设计提供了一定的理论基础.   相似文献   

2.
We study static and dynamic stability problems for a thin flexible rod subjected to axial compression with the geometric nonlinearity explicitly taken into account. In the case of static action of a force, the critical load and the bending shapes of the rod were determined by Euler. Lavrent’ev and Ishlinsky discovered that, in the case of rod dynamic loading significantly greater than the Euler static critical load, there arise buckling modes with a large number of waves in the longitudinal direction. Lavrent’ev and Ishlinsky referred to the first loading threshold discovered by Euler as the static threshold, and the subsequent ones were called dynamic thresholds; they can be attained under impact loading if the pulse growth time is less than the system relaxation time. Later, the buckling mechanism in this case and the arising parametric resonance were studied in detail by Academician Morozov and his colleagues.In this paper, we complete and develop the approach to studying dynamic rod systems suggested by Morozov; in particular, we construct exact and approximate analytic solutions by using a system of special functions generalizing the Jacobi elliptic functions. We obtain approximate analytic solutions of the nonlinear dynamic problem of flexible rod deformation under longitudinal loading with regard to the boundary conditions and show that the analytic solution of static rod system stability problems in a geometrically nonlinear statement permits exactly determining all possible shapes of the bent rod and the complete system of buckling thresholds. The study of approximate analytic solutions of dynamic problems of nonlinear vibrations of rod systems loaded by lumped forces after buckling in the deformed state allows one to determine the vibration frequencies and then the parametric resonance thresholds.  相似文献   

3.
李尧臣 《力学季刊》2002,23(2):265-271
本文研究了线弹性的圆截面压杆在刚性井壁的曲线井中的屈曲问题。压杆两端为铰支,杆和井壁之间的摩擦力忽略不计,失稳前假设压杆位于曲线井的较低侧。分析了压杆屈曲时的几何变形条件,导出了压杆的曲率,变形能和各项外力势的表达式,用最小势能原理导出压杆失稳的微分方程和边界条件。引入梁单元,用有限单元法求得了压杆失稳时的临界压力和杆轴线状态。结果显示,临界压力随着压杆自重和曲线井半径的增加而增加。自重为零时,杆轴线为半个正弦曲线;自重不为零时,杆轴线为振荡的曲线,且振荡主要集中在压杆顶部。  相似文献   

4.
蒋良潍  黄润秋 《力学学报》2006,14(3):289-294
对反倾层状岩体斜坡弯曲-拉裂的失稳破坏判据,已有研究分别基于两种力学模型进行推导,即竖直压杆弹性屈曲稳定和平直梁弯折破坏模型,但对层间错动阻力及挠度产生附加弯矩等因素未加以考虑,不尽合理。在反倾斜坡岩层受力分析基础上,建立考虑了板侧层间错动阻力的下端嵌固、上端自由的斜置等厚弹性悬臂板梁模型,统一地通过瑞利-里兹能量方法,推导了弹性屈曲临界条件和嵌固端弯折破坏临界条件。实例计算及讨论表明,弹性屈曲判据适用于陡立岩层;而中-陡反倾岩层应主要为弯折破坏,但层间的力学性质对弯折临界判据值具有较大影响。  相似文献   

5.
局部纵向屈曲是普遍存在于薄宽带材生产过程的板形缺陷,是屈曲研究的难点,精确的解析求解方法对局部纵向屈曲形成机理的研究和板形质量的提高具有重要意义。本文将任意位置的局部纵向屈曲分为带材边部和内部两类,采用辛弹性力学方法直接推导得到了局部纵向屈曲区域承受不同边界约束条件时的临界屈曲应力和屈曲挠度函数,并将求解结果与有限元和相关文献结果进行了对比。结果表明:辛弹性力学方法与有限元方法相比具有相同计算精度和更高的计算效率,计算精度高于传统能量法;带材边界的约束条件对临界屈曲应力、屈曲区域几何形状和屈曲挠度函数均存在显著影响,验证了传统能量法求解的不足,有利于提高局部屈曲计算精度。  相似文献   

6.
In [1], it was shown that, under the action of compressing transverse forces of constant (in the deformation process) direction on the rod-strip, there are two statically possible buckling modes (for the adjacent neutral equilibrium), one of which is purely shear and the second is purely flexural and is realized without transverse strains.In the present paper, we consider problems about static and dynamic buckling modes of a rod-strip under the separate action of longitudinal and transverse compressing and also shear forces, which belong to the class of follower forces of two types. The first type corresponds to the conservation of directions of the above forces along the basis vectors of the strained state; the second, to the conservation of one of the components of the surface forces acting along the normal to the deformed boundary surface. We show that if the transverse compressing forces are follower forces, i.e., if in the deformation process they remain normal to the surfaces to which they are applied, then the flexural buckling mode realized in the rod can be found only by the dynamic method [2] based on the use of the refined shear Timoshenko-type model for rods.  相似文献   

7.
黄文彬  曾国平 《力学学报》1991,23(2):172-180
本文对不同刚度、不同长度、不同支承条件的具有对称截面的重叠梁,在任何载荷作用下产生的弯扭变形而引起的接触问题进行了分析,导出了单侧线接触、双侧线接触时的压力分布规律及点接触定理;给出了一个静不定梁算例,当外载变化时将出现单侧接触区、双侧接触区与点接触的复杂情况,而数值计算描述了当外载增长时接触区与反力变化的发展过程。  相似文献   

8.
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented.Based on the expression of magnetic force from the variational principle of ferromagnetic plates,the buckling and bending theory of thin plates,the Mises yield criterion and the increment theory for plastic deformation,we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method.Along with the phenom- ena of buckling/snapping and bending,or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed,the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads,the plastic regions expanding with the magnitude of applied magnetic field,as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.  相似文献   

9.
超静定梁变形计算的积分法   总被引:1,自引:0,他引:1  
从线性化弯矩和曲率关系出发,将超静定梁多余反力的弯矩叠加到梁截面弯 矩中去,经两次积分得到了包括积分常数和多余反力的分段转角方程和挠曲线方程,利用边界 条件和连续条件确定积分常数和多余反力,进而确定了转角方程和挠曲线方程.文中工作扩大 了积分法的应用范围. 教学实践表明,用积分法解超静定梁的变形能够起到帮助学生学习和 掌握固体力学的边值问题解题思想的作用.  相似文献   

10.
吴晓 《力学季刊》2022,43(2):458-464
基于材料力学弯曲理论,利用广义变分原理研究了非线性本构关系静不定梁支承反力的求解,指出了有关文献求解非线性本构关系静不定梁支承反力存在的错误.研究结果表明:本构关系为的静不定梁弯曲时,会同时存在曲率为正、曲率为负的梁段.当n为奇数时,曲率为正梁段的余能表达形式与曲率为负的余能表达式相同.当n为偶数时,曲率为正梁段的余能表达式与曲率为负梁段的余能表达式则不相同,存在正负号的差异.  相似文献   

11.
The buckling load and its probabilistic nature (average and variance) of Bernoulli beams with stochastic material (bending stiffness) properties is derived analytically by a new functional perturbation method (FPM). A buckling shape function is assumed, based on the homogeneous solution and additional terms to account for the morphology effects. The buckling load in the transcendental equation is treated as a functional of the bending modulus (stiffness or compliance) field. Applying a functional perturbation to the above equation, the buckling load is found analytically to any desired degree of accuracy, as a function of material morphology. The FPM is executed using both stiffness and compliance statistical data. The impact of each of the two data sources on the solution accuracy is examined, showing that compliance based solutions are accurate for small correlation lengths. Statically indeterminate problems can be treated with no additional effort. An example of a simply supported beam is solved in detail. Comparison with previous studies, where stochastic finite element and Monte Carlo simulation were used, showed the relative accuracy and insight capabilities of the method. The clamped-free case is also studied to demonstrate that symmetry conditions, used for homogeneous beams to find the buckling load on the basis of a simply supported case, are not valid for heterogeneous beams.  相似文献   

12.
Two novel statically indeterminate planar lattice materials are designed: a new Kagome cell (N-Kagome) and a statically indeterminate square cell (SI-square). Their in-plane mechanical properties, such as stiffness, yielding, buckling and collapse mechanisms are investigated by analytical methods. The analytical stiffness is also verified by means of finite element (FE) simulations. In the case of uniaxial loading, effective modulus, yield strength, buckling strength and critical relative density are compared for various lattice structures. At a critical relative density, the collapse mode will change from buckling to yielding. Elastic buckling under macroscopic shear loading is found to have significant influence on failure of lattice structures, especially at low relative densities. Comparison of the analytical bulk and shear moduli with the Hashin–Shtrikman bounds indicates that the mechanical properties of the SI-square honeycomb are relatively close to being optimal. It is found that compared with the other existing stretching-dominated 2D lattice structures, the N-Kagome cell possesses the largest continuous cavities for fixed relative densities and wall thicknesses, which is convenient for oil storage, disposal of heat exchanger, battery deploying and for other functions. And the initial yield strength of the N-Kagome cell is slightly lower than that of the Kagome cell. The SI-square cell has similar high stiffness and strength as the mixed cell while its buckling resistance is about twice than that of the mixed cell.  相似文献   

13.
In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.  相似文献   

14.
We give the results of large deflection experiments involving the bending and twisting of 1 mm diameter nickel-titanium alloy rods, up to 2 m in length. These results are compared to calculations based on the Cosserat theory of rods. We present details of this theory, formulated as a boundary value problem. The mathematical boundary conditions model the experimental setup. The rods are clamped in aligned chucks and the experiments are carried out under rigid loading conditions. An experiment proceeds by either twisting the ends of the rod by a certain amount and then adjusting the slack, or fixing the slack and varying the amount of twist. In this way, commonly encountered phenomena are investigated, such as snap buckling, the formation of loops, and buckling into and out of planar configurations. The effect of gravity is discussed.  相似文献   

15.
It was earlier shown that a rod can buckle under the action of a sudden longitudinal load smaller than the Euler critical load. The buckling mechanism is related to excitation of periodic longitudinal waves generated in the rod by the sudden loading, which in turn lead to transverse parametric resonances. In the linear approximation, the transverse vibration amplitude increases unboundedly, and in the geometrically nonlinear approach, beats with energy exchange from longitudinal to transverse vibrations and back can arise. In this case, the transverse vibration amplitude can be significant. In the present paper, we study how this amplitude responds to the following two factors: the smoothness of application of the longitudinal force and the internal friction forces in the rod material.  相似文献   

16.
证明了在杆系中,力的转换矩阵与位移的转换矩阵互为转置矩阵,当静不定非线性杆系静力平衡方程确定,而变形协调条件难以确定时,利用转置矩阵可以方便求得静不定非线性杆系的内力及有关节点位移.非线性材料杆系应力-应变关系 σ=Bε1/n中的幂n=2时,非线性材料静不定桁架有可能存在两个解;而采用常规方法求解静不定非线性杆系内力时...  相似文献   

17.
Stability problems for cylindrical shells under various loading modes were considered in numerous papers. A detailed analysis of such problems can be found, e.g., in the monograph [1]. We refer to the solutions presented in this monograph as classical.For long cylindrical shells in axial compression, one of the buckling modes is the purely beam flexural mode similar to the classical buckling mode of a straight rod. It is well known that it can be studied by using the nonlinear or linearized equations of the membrane theory of shells. In [2], it was shown that, on the basis of such equations constructed starting from the noncontradictory version of geometrically nonlinear elasticity relations in the quadratic approximation [3], under the separate action of the axial compression, external pressure, and torsion, there are also previously unknown nonclassical buckling modes, most of which are shear ones.In the present paper, we show that the use of the above equations for cylindrical shells under compression and external pressure with simultaneous pure torsion or bending permits revealing the earlier unknown torsional, beam flexural, and beam torsional-flexural buckling modes, which are nonclassical, just as those found in [2]. The second of these buckling modes is realized when axially compressing forces are formed in the shell with simultaneous torsion, and the third of them is realized under compression combined with pure bending.It was found that, earlier than the classical buckling modes, the torsional buckling modes can be realized for relatively short shells with small shear rigidity in the tangent plane, while the second and third buckling modes can be realized for relatively long shells.  相似文献   

18.
构造了带有补充项的双重正弦傅里叶级数通解来求解各种边界条件的多层正交各向异性矩形薄板的弯曲、振动和稳定问题.将坐标轴取在中性面上,求出用挠度表示的应力表达式,然后由横截面上每单位宽度的应力合成板的内力;再将层合板的内力代入板的平衡方程中得到板的控制方程,将多层板的物理参数折算为等价的单层板物理参数;最后联立控制方程与边界条件,求得未知量的系数并代入本文的通解中.本文的通解不需要叠加即可求解各种边界条件的板的弯曲、振动和稳定问题;现有的对于单层板的研究都可以用本文的方法拓展到多层板领域;对于复杂边界条件的板,也可以使用该通解分析.  相似文献   

19.
The problems of bending and stability of Bernoulli–Euler beams are solved analytically on the basis of a simple linear theory of gradient elasticity with surface energy. The governing equations of equilibrium are obtained by both a combination of the basic equations and a variational statement. The additional boundary conditions are obtained by both variational and weighted residual approaches. Two boundary value problems (one for bending and one for stability) are solved and the gradient elasticity effect on the beam bending response and its critical (buckling) load is assessed for both cases. It is found that beam deflections decrease and buckling load increases for increasing values of the gradient coefficient, while the surface energy effect is small and insignificant for bending and buckling, respectively.  相似文献   

20.
In technological processes of rod bending, the critical time is determined [1] by the criterion of unbounded increase A → ∞ in the bent axis amplitude, which is equivalent to the requirement A ? A 0, where A 0 is value of the amplitude at the initial time t = 0. In this case, the mathematical models of the process of buckling of rods and plates [2] are constructed in the framework of the theory of small displacements. This contradiction can be removed by the assumption that the critical state is realized for deflections A of the order of several A 0, i.e., at the time instant corresponding to a sharp increase in displacements. Naturally, this assumption is of local character, because the instant of the transition to the accelerated increase in deflections depends on specific conditions such as, for example, the support conditions, the creep coefficient, the type of the system imperfectness, the value of A 0, and the eccentricity of the load application.In what follows, we show that, in the case of longitudinal bending (buckling), the time instant directly preceding the beginning of the catastrophic increase in deflections can be determined by the variation in the phase volume of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号