首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effective permeability of a heterogeneous porous medium   总被引:5,自引:0,他引:5  
The effective (single-phase) permeability of an (infinite) heterogeneous porous medium is studied using a formalism of Green's functions. We give formal expressions for it in the form of a series expansion involving the microscopic random-permeability field many-body correlation functions of higher and higher order.The particular case of a log-normal medium of infinite extent is studied using field-theoretical methods. Using partial series resummation techniques, we derivea formula up to all orders in the local correlations which was first reckoned by many authors by means of a first-order calculation. The formula — which remains an approximation — works whatever the dimensionality of the space, and gives the following simple estimate for the effective permeability in 3 D:K eff=k 1/33. The method is general and the approximations can be systematically improved on when more complex situations are studied.Roman Letters D number of dimensions of the space in which the flow takes place - f(r) body force field,N - f(q) Fourier-transformed body-force field, Nm3 - G 0(r, r) Green's function of the Laplace operator, m–1 - g(k,r, r) velocity propagator before averaging, m–1 - G(r, r) velocity propagator after averaging, m–1 - j(r) a scalar dimensionless field - k(r) local value of the permeability at point r, m2 - K eff effective permeability - K g geometric average of the local permeability, m2 - l typical size of the averaging volume, m - L characteristic length of the porous medium or of the reservoir, m - L(r, r) projection operator, m–2 - M(r, r) scattering operator, m–3 - p(r) local value of the pressure, Nm–2 - p(k,r, r) pressure propagator before averaging, m–1 - P(r, r) pressure propagator after averaging, m–1 - r position vector, m - r modulus of vectorr, m - unit vector pointing in the direction ofr - q Fourier wave vector, m–1 - q modulus of the Fourier wave-vectorq, m–1 - unit vector pointing in the direction ofq - projector over vector - 1 unit tensor - X(r) a local random variable - ¯X(r) volume averaged local random variable - X (r) ensemble averaged local random variable - V large-scale averaging volume, m3 - Z(j) generating functional of a random field - Z(r,j) modified generating functional of a random field - Z normalization factor Greek Letters 0 average value of the logarithm of the permeability - (r) fluctuation of the logarithm of permeability at pointr - viscosity of the fluid, Nt/m2 - (r–r) two-point correlation function of the fluctuations of the logarithm of the permeability - k correlation length of the permeability correlation function, m - u correlation length of the velocity correlation function, m  相似文献   

2.
The branching off of steady-state regimes from mechanical equilibrium is studied for the problem of filtration convection in a parallelepiped. The conditions for the geometric parameters under which stable continuous families of steady-state regimes develop are found. The stability of equilibria of the family with respect to three-dimensional perturbations is analyzed in a numerical experiment using a finite-difference method.  相似文献   

3.
Numerical and analytical investigations of the thermosolutal instability in a viscoelastic Rivlin-Ericksen fluid are carried out in the presence of a uniform vertical magnetic field to include the Hall current with a uniform angular velocity in a porous medium. For stationary convection, the stable solute gradient parameter and the rotation have stabilizing effects on the system, whereas the magnetic field and the medium permeability have stabilizing or destabilizing effects on the system under certain conditions. The Hall current in the presence of rotation has stabilizing effects for sufficiently large Taylor numbers, whereas in the absence of rotation, the Hall current always has destabilizing effects. These effects have also been shown graphically. The viscoelastic effects disappear for stationary convection. The stable solute parameter, the rotation, the medium permeability, the magnetic field parameter, the Hall current, and the vis-coelasticity introduce oscillatory modes into the system, which are non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.  相似文献   

4.
In this paper, the steady flow and heat transfer of a magnetohydrodynamic fluid is studied. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field and occupies the porous space in annular pipe. The governing nonlinear equations are modeled by introducing the modified Darcy's law obeying the Sisko model. The system is solved using the homotopy analysis method (HAM), which yields analytical solutions in the form of a rapidly convergent infinite series. Also, HAM is used to obtain analytical solutions of the problem for noninteger values of the power index. The resulting problem for velocity field is then numerically solved using an iterative method to show the accuracy of the analytic solutions. The obtained solutions for the velocity and temperature fields are graphically sketched and the salient features of these solutions are discussed for various values of the power index parameter. We also present a comparison between Sisko and Newtonian fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The lattice Boltzmann method (LBM) is used to simulate the flow through an idealized proton exchange membrane fuel cell (PEMFC) porous transport layer (PTL) geometry generated using a Monte Carlo method. Using the calculated flow field, Darcy's law is applied and the permeability is calculated. This process is applied in both through‐ and in‐plane directions of the paper as both of these permeability values are important in computational fluid dynamics models of PEMFCs. It is shown that the LBM can be used to determine permeability in a random porous media by solving the flow in the microstructure of the material. The permeability in the through‐ and in‐plane directions is shown to be different and the anisotropic nature of the geometry creates anisotropic permeability. It is also found that fiber arrangement plays a large role in the permeability of the PTL. New correlations are presented for in‐ and though‐plane permeabilities of fibrous porous media with (0.6<ε<0.8). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of linearly polarized vibration on the stability of a plane displacement front in a porous medium is studied. The problem of the stability of the motion of a plane displacement front traveling at a constant velocity U under the action of vibration normal to the front is considered. It is shown that under the action of vibration the dynamics of the plane displacement front can be described by the Mathieu equation with a dissipative term. Using the standard averaging method, in the case of high-frequency vibration it is revealed that vibration can only increase the stability of the system. It is found that the vibration stabilizes the plane displacement front with respect to part of the perturbation spectrum.  相似文献   

7.
The problem of hydraulic fracture formation in a porous medium is investigated in the approximation of small fracture opening and inertialess incompressible Newtonian fluid fracture flow when the seepage through the fracture walls into the surrounding reservoir is asymptotically small or large. It is shown that the system of equations describing the propagation of the fracture has self-similar solutions of power-law or exponential form only. A family of self-similar solutions is constructed in order to determine the evolution of the fracture width and length, the fluid velocity in the fracture, and the length of fluid penetration into the porous medium when either the fluid flow rate or the pressure as a power-law or exponential function of time is specified at the fracture entrance. In the case of finite fluid penetration into the soil the system of equations has only a power-law self-similar solution, for example, when the fluid flow rate is specified at the fracture entrance as a quadratic function of time. The solutions of the self-similar equations are found numerically for one of the seepage regimes.  相似文献   

8.
A model for convection due to the selective absorption of radiation in a fluid saturated porous medium is investigated. The model is based on a similar one introduced for a viscous fluid by Krishnamurti [x]. Employing this adapted model we show the growth rate for the linearised system is real. A linear instability analysis is performed. Global stability thresholds are also found using nonlinear energy theory. An excellent agreement is found between the linear instability and nonlinear stability Rayleigh numbers, so that the region of potential subcritical instabilities is very small, demonstrating that the linear theory accurately emulates the physics of the onset of convectionReceived: 10 February 2003, Accepted: 11 March 2003, Published online: 12 September 2003  相似文献   

9.
A model for convection due to the selective absorption of radiation in a fluid saturated porous medium is investigated. The model is based on a similar one introduced for a viscous fluid by Krishnamurti [x]. Employing this adapted model we show the growth rate for the linearised system is real. A linear instability analysis is performed. Global stability thresholds are also found using nonlinear energy theory. An excellent agreement is found between the linear instability and nonlinear stability Rayleigh numbers, so that the region of potential subcritical instabilities is very small, demonstrating that the linear theory accurately emulates the physics of the onset of convection. Received February 10, 2003 / Accepted February 10, 2003/ Published online May 9, 2003 / B. Straughan  相似文献   

10.
The stability of the phase interface in geothermal systems is considered in the isothermal approximation with allowance for capillary effects. The dispersion relation is obtained and the domains of stability and instability of steady-state vertical flows are found. Possible types of transition to instability, namely, transitions with the most unstable mode corresponding to zero and infinite wavenumbers or to all wavenumbers simultaneously, are described. In the first case the nonlinear Kolmogorov-Petrovskii-Piskunov equation describing the evolution of a narrow strip of weakly unstable modes on the stability threshold is derived. The effect of the parameters of the system on its stability is investigated.  相似文献   

11.
In this paper analytical solutions for the steady fully developed laminar fluid flow in the parallel-plate and cylindrical channels partially filled with a porous medium and partially with a clear fluid are presented. The Brinkman-extended Darcy equation is utilized to model the flow in a porous region. The solutions account for the boundary effects and for the stress jump boundary condition at the interface recently suggested by Ochoa-Tapia and Whitaker. The dependence of the velocity on the Darcy number and on the adjustable coefficient in the stress jump boundary condition is investigated. It is shown that accounting for a jump in the shear stress at the interface essentially influences velocity profiles.  相似文献   

12.
The onset of convection in a system of two horizontal layers (a pure liquid and a porous medium saturated with the same liquid) heated from below under the action of vertical vibration is investigated. For describing the free thermal convection, in the liquid layer the Boussinesq approximation and in the porous layer the Darcy-Boussinesq approximation are used. In the limiting case of a thin liquid layer, effective boundary conditions on the upper boundary of the porous layer with account for convection in the liquid layer are obtained and it is shown that vibration has a stabilizing effect, whereas the presence of a liquid layer leads to destabilization. For an arbitrary liquid to porous layer thickness ratio the onset of convection is investigated numerically. In the case of a thin liquid layer there are two (short-and long-wave) unstable modes. In the case of thick layers the neutral curves are unimodal. Vibration has a stabilizing effect on perturbations with any wave number but affects short-wave perturbations much more strongly than long-wave ones.  相似文献   

13.
Models of the residual oil saturation and models of its effect on the flow in injection wells are proposed. The threshold nature of the dependence of the residual oil saturation on the capillary number determines a change in the flow regimes in the neighborhood of the injection well. The cases of pure, contaminated, and compressible reservoirs are considered. The dependences of the basic problem parameters on the displacement conditions and the state of the reservoir are obtained, together with formulas for the pressure distribution and well injectivity. The topicality of such a simulation for field calculations is demonstrated.  相似文献   

14.
The aim of this paper is to model and simulate the displacement of radioactive elements in a saturated heterogeneous porous medium. New schemes are proposed to solve accurately the convection–diffusion–reaction equations including nonlinear terms in the time derivative. Numerical tests show the stability and robustness of these schemes through strong heterogeneities of the medium. Finally the COUPLEX 1 benchmark concerning the far field simulation of a polluted flow by a leak of a nuclear waste disposal is performed and compared with the results available in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Plane nonlinear fluid flows through a porous medium which simulate a sink located at the same distance from the roof and floor of the stratum for two nonlinear flow laws are constructed. The following flow laws are taken: a power law and a law of special form reducing to analytic functions in the hodograph plane.  相似文献   

16.
The problem of plane convective flow through a porous medium in a rectangular vessel with a linear temperature profile steadily maintained on the boundary is considered. The onset of unsteady regimes is investigated numerically. It is shown that their onset scenarios depend on the vessel dimensions and the seepage Rayleigh number and may be as follows: the generation of stable and unstable periodic regimes as a result of a one-sided bifurcation, the generation of a stable periodic regime as a result of an Andronov-Hopf cosymmetric bifurcation, the formation of a chaotic attractor, the branching-out of a stable quasi-periodic regime from a point of a single-parameter family of steady-state regimes, and the generation of unstable periodic regimes as a result of disintegration of homoclinic trajectories. The specifics of most of the bifurcations mentioned above are attributable to the cosymmetry of the problem considered.  相似文献   

17.
In this paper, the temporal development of small disturbances in a pressure‐driven fluid flow through a channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized governing equations for disturbances yield a fourth‐order eigenvalue problem, which reduces to the well‐known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave number αc, and the critical wave speed cc are obtained for a wide range of the porous medium shape factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on the fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The rheology of aqueous HPG solutions in the range 100 wppm to 5000 wppm is investigated. The flow through a porous medium and turbulent tube flow, respectively, of these solutions is studied as well. Especially with respect to the higher concentrations, the data correlate nicely only after the effect of shear is extracted, i.e., after the variable viscosity is taken into account. This is accomplished by working with an apparent viscosity c , defined such that, the Hagen Poiseuille law (with c ) holds in laminar tube flow.  相似文献   

19.
In the case of coupled, two-phase flow of fluids in porous media, the governing equations show that there are four independent generalized permeability coefficients which have to be measured separately. In order to specify these four coefficients at a specific saturation, it is necessary to conduct two types of flow experiments. The two types of flow experiments used in this study are cocurrent and countercurrent, steady-state permeability experiments. It is shown that, by taking this approach, it is possible to define the four generalized permeability coefficients in terms of the conventional cocurrent and countercurrent effective permeabilities for each phase. It is demonstrated that a given generalized phase permeability falls about midway between the conventional, cocurrent effective permeability for that phase, and that for the countercurrent flow of the same phase. Moreover, it is suggested that the conventional effective permeability for a given phase can be interpreted as arising out of the effects of two types of viscous drag: that due to the flow of a given phase over the solid surfaces in the porous medium and that due to momentum transfer across the phase 1-phase 2 interfaces in the porous medium. The magnitude of the viscous coupling is significant, contributing at least 15% to the total conventional cocurrent effective permeability for both phases. Finally, it is shown that the nontraditional generalized permeabilities which arise out of viscous coupling effects cannot equal one another, even when the viscosity ratio is unity and the surface tension is zero.  相似文献   

20.
Two-dimensional steady-state thermal concentration convection in a rectangular porous cavity is simulated numerically. The temperature and concentration gradients are horizontal and the buoyancy forces act either in the same or in opposite directions. The flow through the porous medium is described by the Darcy-Brinkman or Forchheimer equations. The SIMPLER numerical algorithm based on the finite volume approach is used for solving the problem in the velocity-pressure variables.Numerous series of calculations were carried out over the range Ra t =3·106 and 3·107, 10-6 < Da < 1, 1 < N < 20, Le=10 and 100, where Ra, Da, Le, and N are the Rayleigh, Darcy, and Lewis numbers and the buoyancy ratio, respectively. It is shown that the main effect of the presence of the porous medium is to reduce the heat and mass transfer and attenuate the flow field with decrease in permeability. For a certain combination of the Ra, Le, and N numbers the flow has a multicellular structure. The mean Nusselt and Sherwood numbers are presented as functions of the governing parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号