首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of autonomous oscillators with exact desired periodic steady-state solution is described in this contribution. The vector field of the oscillator differential equation is built up with a conservative and a dissipative part. Both parts are synthesized using an algebraic function describing the desired limit cycle. The desired periodic motion is restricted by a finite numbers of harmonics, whereby the amplitude and the phase shift of every harmonic can be freely chosen, depending on the specific application. Afterwards the synthesis of a periodically driven oscillator with an exact desired periodic response is described. For this purpose, the differential equation of the autonomous oscillator is extended by a state-dependent compensation term that equals the excitation at the steady-state solution. Here the freely definable amplitudes and phase angles of the oscillator motion are restricted by the existence and stability conditions for synchronization.  相似文献   

2.
A new method of uniform expansions of periodic solutions to ordinary differential equations with arbitrary odd polynomial non-linearity is constructed to study quasi-harmonic processes in non-linear dynamical systems, in particular when a small parameter of non-linearity is absent. The main idea of the method consists in using the ratio of the amplitudes of higher harmonics to the amplitude of the first harmonic of a periodic solution as a small formal parameter. In the particular case of a single-periodic solution, this small parameter appears due to descending the amplitudes of harmonics monotonically with increasing their number. Due to uniform expansion the amplitudes of higher harmonics turn out to be rational and fractional functions in the amplitude of the first harmonic and the frequency of oscillations. We show that the method of uniform expansions is an effective tool for obtaining convergent expansions of periodic solutions in explicit form all over the domain, where periodic solutions exist, independently of the magnitude of non-linearity. In each subsequent approximation, one more higher harmonic is taken into account, with all the other harmonics being corrected. We demonstrate the effectiveness of the method on the examples of the harmonically forced Duffing oscillator; free vibrations of the oscillator with fifth-power non-linearity and mathematical pendulum.  相似文献   

3.
An extension to an algorithm due to Simpson has been developed for the analysis of a non-linear second order two-degree-of-freedom system with external periodic excitation. The form of equations considered arises from the study of mechanical systems with a single concentrated weak non-linearity and the method assumes a solution made up of harmonic terms whose amplitudes vary slowly in time. The system considered is such that in the absence of external excitation, it possesses a stable equilibrium point and an unstable limit cycle arising from a sub-critical Hopf bifurcation. When forcing is applied, the stable equilibrium point may then be replaced by a stable periodic attractor, and the limit cycle by an unstable multi-periodic attractor. The method has been applied to the problem of locating these attractors, and if they exist, of finding the stable attractor's basin of attraction in terms of initial conditions. The method reduces the problem from a search in four-dimensional phase space to a search for a boundary in a plane defined by amplitudes a1 and a2 in the assumed form of the solution.The method was applied to three non-linear systems in which the non-linearity was due to either a linear spring with a small amount of cubic hardening or a linear spring with freeplay. Agreement was shown to be good in those cases where the non-linearity was weak. However, the method would not be expected to give such accurate results if the non-linear effect was more significant. This was illustrated for a case involving the freeplay non-linearity.  相似文献   

4.
Traveling waves in a viscous liquid flowing down an inclined plane can be described at small and moderate Reynolds numbers by an ordinary differential equation in the thickness of the layer [1, 2]. As the Reynolds number tends to zero, this equation goes over into an equation of third order with quadratic nonlinearity [3]. Periodic solutions of this last equation bifurcating from the plane-parallel solution have been investigated by Nepomnyashchii and Tsvelodub [3–6]. In the present paper, a study is made of the bifurcation of periodic solutions from periodic solutions, namely, an investigation is made of the values of the wave number for which a periodic solution is not unique; a bifurcation equation is derived, the number of bifurcating solutions is found, and their behavior near a bifurcation point is considered; and the bifurcating solutions are continued numerically with respect to a parameter (the wave number) from the neighborhoods of the bifurcation points.  相似文献   

5.
IntroductionLetC(k- 1)2π =h(t) |h :R →Ris (k -1 )_thordercontinuousdifferentiableandh(t+ 2π) ≡h(t) ,  C2π =h(t) |h :R →Riscontinuousandh(t+ 2π) ≡h(t) ,  ‖h(t)‖ =supt∈ [0 ,2π] |h(t) | ,  ‖h(t)‖Pk- 1 =max‖h(t)‖ ,‖h′(t)‖ ,… ,‖h(k- 1) (t)‖ ,  x(m) (t+ ·) (θ) =x(m) (t+θ)  θ∈R (m =0 ,1 ,2 ,… ,k-1 ) .Clearly ,x(m) (t + ·) ∈C2π, …  相似文献   

6.
A special linear transformation is introduced to express the general solution to a second-order differential equation with a periodic coefficient in terms of a particular solution to an auxiliary second-order nonlinear system with a periodically perturbed right-hand side. It is numerically shown that there exist periodic solutions to the auxiliary system outside the instability regions of the solutions to the Mathieu equation. The estimates obtained for the instability regions are in agreement with known results.  相似文献   

7.
We present a multiple-scale perturbation technique for deriving asymptotic solutions to the steady Korteweg–de Vries (KdV) equation, perturbed by external sinusoidal forcing and Burger’s damping term, which models the near resonant forcing of shallow water in a container. The first order solution in the perturbation hierarchy is the modulated cnoidal wave equation. Using the second order equation in the hierarchy, a system of differential equations is found describing the slowly varying properties of the cnoidal wave. We analyse the fixed point solutions of this system, which correspond to periodic solutions to the perturbed KdV equation. These solutions are then compared to the experimental results of Chester and Bones (1968).  相似文献   

8.
This paper gives sufficient conditions for the existence of periodic solutions of twist type of a time-dependent differential equation of the second order. The concept of periodic solution of twist type is defined in terms of the corresponding Birkhoff normal form and, in particular, implies that the solution is Lyapunov stable. Some applications to nonlocal problems are given.  相似文献   

9.
The order-1 periodic solution of the system with impulsive state feedback control is investigated. We get the sufficient condition for the existence of the order-1 periodic solution by differential equation geometry theory and successor function. Further, we obtain a new judgement method for the stability of the order-1 periodic solution of the semi-continuous systems by referencing the stability analysis for limit cycles of continuous systems, which is different from the previous method of analog of Poincarè criterion. Finally, we analyze numerically the theoretical results obtained.  相似文献   

10.
The steady state response of a non-linear beam under periodic excitation is investigated. The non-linearity is attributed to the membrane tension effect which is induced in the beam when the deflection is not small in comparison to its thickness. The effects of multimode participation are investigated for simply supported and clamped boundary conditions. The finite element technique is used to formulate the non-linear differential equations of the straight beam and the method of averaging is used to obtain an approximate solution to the non-linear equations under harmonic loading. An analog computer was used to simulate the non-linear beam equation which was subjected to harmonic excitation. The agreement between theoretical and experimental values is reasonably good.  相似文献   

11.
A system of second-order nonlinear ordinary differential equations is considered. It is shown analytically that the solutions to this system are isochronous, which is not typical for nonlinear systems. It is also shown that a periodic delta function is a limit of the solution if the amplitude tends to infinity.  相似文献   

12.
This is a continuation of [1]. In [1] we suggested a method of direct perturbation of partial differential equation and weighted integration to calculate the periodic solution for continuum mechanics. In this paper, by using the above method we calculate the resonant and nonresonant periodic solutions of beam with fixed span and different boundary conditions and the resonant periodic solution of square plate under the action of concentrated periodic load. Besides, the influences of nonprincipal mode upon periodic solution and of static load upon amplitudefrequency curve are given.  相似文献   

13.
强非线性动力系统的频率增量法   总被引:6,自引:1,他引:5  
黄彪  宗国威  陈兆莹  胡敏 《力学学报》2001,33(2):242-249
提出一类强非线性动力系统的暧时频率增量法,将描述动力系统的二阶常微分方程,化为以相位为自变量、瞬廛频率为未知函数的积分方程;用谐波平衡原理,将求解瞬时频率的积分问题,归结为求解以频率增量的Fourier系数为独立变量的线性代数方程组;给出了若干例子。  相似文献   

14.
15.
A technique for dimensional reduction of nonlinear delay differential equations (DDEs) with time-periodic coefficients is presented. The DDEs considered here have a canonical form with at most cubic nonlinearities and periodic coefficients. The nonlinear terms are multiplied by a perturbation parameter. Perturbation expansion converts the nonlinear response problem into solutions of a series of nonhomogeneous linear ordinary differential equations (ODEs) with time-periodic coefficients. One set of linear nonhomogeneous ODEs is solved for each power of the perturbation parameter. Each ODE is solved by a Chebyshev spectral collocation method. Thus we compute a finite approximation to the nonlinear infinite-dimensional map for the DDE. The linear part of the map is the monodromy operator whose eigenvalues characterize stability. Dimensional reduction on the map is then carried out. In the case of critical eigenvalues, this corresponds to center manifold reduction, while for the noncritical case resonance conditions are derived. The accuracy of the nonlinear Chebyshev collocation map is demonstrated by finding the solution of a nonlinear delayed Mathieu equation and then a milling model via the method of steps. Center manifold reduction is illustrated via a single inverted pendulum including both a periodic retarded follower force and a nonlinear restoring force. In this example, the amplitude of the limit cycle associated with a flip bifurcation is found analytically and compared to that obtained from direct numerical simulation. The method of this paper is shown by example to be applicable to systems with strong parametric excitations.  相似文献   

16.
宋家豪  曹文博  张伟伟 《力学学报》2023,55(5):1195-1205
物理信息神经网络(physics-informed neural network, PINN)是将模型方程编码到神经网络中,使网络在逼近定解条件或观测数据的同时最小化方程残差,实现偏微分方程求解.该方法虽然具有无需网格划分、易于融合观测数据等优势,但目前仍存在训练成本高、求解精度低等局限性.文章提出频域物理信息神经网络(frequency domain physics-informed neural network, FD-PINN),通过从周期性空间维度对偏微分方程进行离散傅里叶变换,偏微分方程被退化为用于约束FD-PINN的频域中维度更低的微分方程组,该方程组内各方程不仅具有更少的自变量,并且求解难度更低.因此,与使用原始偏微分方程作为约束的经典PINN相比, FD-PINN实现了输入样本数目和优化难度的降低,能够在降低训练成本的同时提升求解精度.热传导方程、速度势方程和Burgers方程的求解结果表明, FD-PINN普遍将求解误差降低1~2个数量级,同时也将训练效率提升6~20倍.  相似文献   

17.
Li Li 《Nonlinear dynamics》1996,9(3):223-247
In this paper a new method for solving for the periodic solution (limit cycle) of a strongly nonlinear system is suggested. Using this method not only the existence, stability and number of periodic solutions can be decided, but at the same time the approximate expressions for these periodic solutions can also be obtained. The proof of this method is given as well.The project is supported by the National Natural Science Foundation of China.  相似文献   

18.
A new notion of solutions is introduced to study degenerate nonlinear parabolic equations in one space dimension whose diffusion effect is so strong at particular slopes of the unknowns that the equation is no longer a partial differential equation. By extending the theory of viscosity solutions, a comparison principle is established. For periodic continuous initial data a unique global continuous solution (periodic in space) is constructed. The theory applies to motion of interfacial curves by crystalline energy or more generally by anisotropic interfacial energy with corners when the curves are the graphs of functions. Even if the driving force term (homogeneous in space) exists, the initial-value problem is solvable for general nonadmissible continuous (periodic) initial data. (Accepted July 5, 1996)  相似文献   

19.
强迫Van der Pol振子的动力学特性   总被引:3,自引:0,他引:3  
采用增量谐波平衡方法导出强迫Van der Pol振子稳态周期响应的IHB计算格式.以外激励频率为参数进行跟踪延续获得了系统主共振时的幅频响应特性,并作出了特定系统参数下的周期响应极限环.其结果与Runge—Kutta方法进行了对比,结果表明该算法精度可以灵活控制,且收敛速度快,结果可靠,是非线性电路系统等工程应用中强非线性问题动力学特性分析的有效方法.  相似文献   

20.
IntroductionInrecentyears,withtheessentialadvantageoflightweightandhighrigidity ,sandwichplatesandshellshavebeenusedasanimportantpatternofstructuralelementsinaeronautical,astronauticalandnavalengineering .However,nonlinearproblemsforsandwichplatesandshellsareonlyinvestigatedbyafewbecauseofthedifficultiesofnonlinearmathematicalproblems.LiuRen_huaiandXuJia_chu[1,2 ]andothershavemadesomeinvestigationsinthisfield .Bifurcationofnonlinearvibrationforsandwichplateshasnotyetbeeninvestigated .Inthisp…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号