首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expressions of the apparent linear elastic moduli and their first and second derivatives, with respect to hydrostatic pressure, are obtained according to the second order elasticity theory. As a particular case when the material is hyperelastic, formulae of the first derivatives of the linear elastic moduli reduce to those obtained by Seeger and Buck.  相似文献   

2.
The topological derivative provides the variation of a response functional when an infinitesimal hole of a particular shape is introduced into the domain. In this work, we compute higher order topological derivatives for elasticity problems, so that we are able to obtain better estimates of the response when holes of finite sizes are introduced in the domain. A critical element of our algorithm involves the asymptotic approximation for the stress on the hole boundary when the hole size approaches zero; it consists of a composite expansion that is based on the responses of elasticity problems on the domain without the hole and on a domain consisting of a hole in an infinite space. We present a simple example in which the higher order topological derivatives of the total potential energy are obtained analytically and by using the proposed asymptotic expansion. We also use the finite element method to verify the topological asymptotic expansion when the analytical solution is unknown.  相似文献   

3.
吴晓 《力学季刊》2016,37(3):581-589
采用弹性理论研究了拉压不同弹性模量薄板上圆孔的孔边应力集中问题.采用广义虎克定律推导出了拉压不同弹性模量薄板上圆孔边的应力平衡方程,并联合利用应力函数及边界条件得到了拉压不同弹性模量薄板上圆孔边的应力表达式.算例分析表明,当薄板材料的拉压弹性模量相差较大时,采用经典弹性理论研究薄板上圆孔的孔边应力是不合适的,当经典弹性理论与拉压不同弹性模量弹性理论的计算结果间的差别超过工程允许误差5%时,应该采用拉压不同弹性模量弹性理论进行计算.  相似文献   

4.
一维正方准晶椭圆孔口平面弹性问题的解析解   总被引:1,自引:0,他引:1  
利用复变方法,引入广义保角映射,研究了一维正方准晶中具有椭圆孔口的平面弹性问题,给出了各应力分量的复变表示,并在特殊情况下转化为Griffith裂纹,得到该裂纹尖端处的应力强度因子的解析解.当准晶体的对称性增加时,正方准晶椭圆孔口平面弹性问题退化为一维四方准晶中具有椭圆孔口的平面弹性问题,同样在特殊情况下转化为Griffith裂纹,得到裂纹尖端处的应力强度因子的解析解.  相似文献   

5.
The antiplane deformation of an anisotropic wedge with finite radius is considered in this paper within the classical linear theory of elasticity. The traction-free condition is imposed on the circular segment of the wedge. Three different cases of boundary conditions on the radial edges are considered, which are: traction-displacement, displacement-displacement and traction-traction. The solution to the governing differential equation of the problem is accomplished in the complex plane by relating the displacement field to a complex function. Several complex transformations are defined on this complex function and its first and second derivatives to formulate the problem in each of the three cases of the problem corresponding to the radial boundary conditions, separately. These transformations are then related to integral transforms which are complex analogies to the standard finite Mellin transforms of the first and second kinds. Closed form expressions are obtained for the displacement and stress fields in the entire domain. In all cases, explicit expressions for the strength of singularity are derived. These expressions show the dependence of the order of stress singularity on the wedge angle and material constants. In the displacement-displacement case, depending upon the applied displacement, a new type of stress singularity has been observed at the wedge apex. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A general solution to a reinforced elliptic hole embedded in an infinite matrix subjected to a remote uniform load is provided in this paper. Investigations on the present elasticity problem are rather tedious due to the presence of material inhomogeneities and complex geometric configurations. Based on the technique of conformal mapping and the method of analytical continuation in conjunction with the alternating technique, the general expressions of the displacement and stresses in a reinforcement layer and the matrix are derived explicitly in a series form. Some numerical results are provided to investigate the effects of the material combinations and geometric configurations on the interfacial stresses. The results show that there exists an optimum design of a reinforcement layer such that both the magnitude of stress concentration and the interfacial stresses could be fairly reduced.  相似文献   

7.
The different forms of second order elasticity operators, in Mindlin’s strain-gradient elasticity, are given for a bi-dimensional physical space. These different forms are obtained according to the different symmetry classes of a material media. Dimensional aspects are discussed together with observations made on the physical behavior of such a media.  相似文献   

8.
For materials characterized by a linear relation between Almansi strains and Cauchy stresses, relations between stresses and complex potentials are obtained and the plane static problem of the theory of elasticity is thus reduced to a boundary-value problem for the potentials. The resulting relations are nonlinear in the potentials; they generalize well-known Kolosov's formulas of linear elasticity. A condition under which the results of the linear theory of elasticity follow from the nonlinear theory considered is established. An approximate solution of the nonlinear problem for the potentials is obtained by the small-parameter method, which reduces the problem to a sequence of linear problems of the same type, in which the zeroth approximation corresponds to the problem of linear elasticity. The method is used to obtain both exact and approximate solutions for the problem of the extension of a plate with an elliptic hole. In these solutions, the behavior of stresses on the hole contour is illustrated by graphs. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 133–143, January–February, 2000.  相似文献   

9.
Two explicit expressions of the stress concentration factor for a tension finite-width strip with a central elliptical hole and an eccentric elliptical hole, respectively, are formulated by using a semi-analytical and semi-empirical method. Accuracy of the results obtained from these expressions is better, and application scope is wider, than the results of Durelli’s photo-elastic experiment and Isida’s formula. When eccentricity of the elliptical hole is within a certain range, the error is less than 8%. Based on the relation between the stress concentration factor and the stress intensity factor, a stress intensity factor expression for tension strips with a center or an eccentric crack is derived with the obtained stress concentration factor expressions. Compared with the existing formulae and the finite element analysis, this stress intensity factor expression also has sufficient accuracy.  相似文献   

10.
A second strain gradient elasticity theory is proposed based on first and second gradients of the strain tensor. Such a theory is an extension of first strain gradient elasticity with double stresses. In particular, the strain energy depends on the strain tensor and on the first and second gradient terms of it. Using a simplified but straightforward version of this gradient theory, we can connect it with a static version of Eringen’s nonlocal elasticity. For the first time, it is used to study a screw dislocation and an edge dislocation in second strain gradient elasticity. By means of this second gradient theory it is possible to eliminate both strain and stress singularities. Another important result is that we obtain nonsingular expressions for the force stresses, double stresses and triple stresses produced by a straight screw dislocation and a straight edge dislocation. The components of the force stresses and of the triple stresses have maximum values near the dislocation line and are zero there. On the other hand, the double stresses have maximum values at the dislocation line. The main feature is that it is possible to eliminate all unphysical singularities of physical fields, e.g., dislocation density tensor and elastic bend-twist tensor which are still singular in the first strain gradient elasticity.  相似文献   

11.
Expressions for the self-energy of straight-line dislocation segments are derived on the basis of the pseudo-continuum theory. Final results are given in simple form and are shown to be valid even for very short segments of the order of 10 interatomic distances. The dependence of the energy expressions on the assumptions introduced is discussed. Dispersive terms are also derived and their influence on the values of the energy is studied. The results are compared with those obtained on the basis of the classical theory of elasticity. The use of the pseudo-continuum model obviates the necessity of introducing an ill-defined core parameter, because in this model the singularity on the dislocation line does not exist. It is the presence of this singularity in classical elasticity which necessitates the introduction of the core parameter. Numerical data illustrate the results obtained as summarized in two tables.  相似文献   

12.
Standard measures of local deformation such as deformation gradient, strain, elastic deformation, and plastic deformation are dimensionless. However, many macroscopic and submacroscopic geometrical changes observed in continuous bodies result in the formation of zones across whose boundaries significant changes in geometry can occur. In order to predict the sizes of such zones and their influence on material response, theories of elasticity and plasticity have been employed in which second gradients of deformation, gradients of strain, as well as gradients of elastic or of plastic deformation are taken into account. The theory of structured deformations provides additive decompositions of first deformation gradient and of second deformation gradient, valid for large deformations of any material, in which each term has a multiscale geometrical interpretation corresponding to the presence or absence of submacroscopic disarrangements (non-smooth geometrical changes such as slips and void formation). This article provides a field theory that broadens the earlier field theory, elasticity with disarrangements, by including energetic contributions from submacroscopic “gradient-disarrangements” (limits of averages of jumps in gradients of approximating deformations) and by treating particular kinematical conditions as internal constraints. An explicit formula is obtained showing the manner in which submacroscopic gradient-disarrangements determine a defectiveness density analogous to the dislocation density in theories of plasticity. A version of the new field theory incorporates this defectiveness density to obtain a counterpart of strain-gradient plasticity, while another instance of elasticity with gradient-disarrangements recovers an instance of strain-gradient elasticity with symmetric Cauchy stress. All versions of the new theory included here are compatible with the Second Law of Thermodynamics.  相似文献   

13.
Using the method of singular integral equation and the crack-cutting technique, the rigorous solutions are obtained for a cylinder with a rectangular hole and a rectangular cylinder with a crack, which exactly satisfy the boundary conditions and the conditions at the corner points. After that the torsional rigidities and the stress intensity factors at the crack tip are determined. Next, for the doubly connected circular cylinder with a rectangular hole the expressions for the singular stresses around the concave corner points are derived and the generalized stress intensity factors are then defined. Since the crack-cutting technique is used in this paper, the solution of the matching rectangular cylinder is also obtained and its numerical results coincide with those in references. Thus the method proposed here is verified. The project supported by National Natural Science Foundation of China  相似文献   

14.
This paper is concerned with the use of a representation in terms of displacement potentials in second order elasticity for equilibrium problems of homogeneous and isotropic materials. After justifying the adoption of an existing representation for linear elasticity for the purpose at hand, appropriate representations for solutions of second order elasticity problems in terms of displacement potentials (for both compressible and incompressible materials) are discussed. The use of the representations in obtaining complete solutions for equilibrium boundary-value problems is then illustrated by application to two examples of plane strain problems of compressible materials.  相似文献   

15.
The aim of this paper is to bridge shape sensitivity analysis and configurational mechanics by means of a widespread use of the shape derivative concept. This technique will be applied as a systematic procedure to obtain the Eshelby’s energy momentum tensor associated to the problem under consideration. In order to highlight special features of this procedure and without loss of generality, we focus our attention in the application of shape sensitivity analysis to the problem of twisted straight bars within the framework of linear elasticity.Kinematic and static variational formulations as well as the direct method of sensitivity analysis are used to perform shape derivatives of both models. Integral expressions of first and second order shape derivatives of the total potential energy and the complementary potential energy with respect to an arbitrary transverse cross-section shape change, are achieved. These integral expressions put in evidence the relationship between shape sensitivity analysis and the first and second order Eshelby’s energy momentum tensors. Also, the null divergence property of these tensors is easily proved by comparing, in each case, the domain and boundary integral shape derivative arrived at. Finally, an example with a known exact solution, corresponding to an elastic bar with elliptical transverse cross-section submitted to twist, is presented in order to illustrate the usefulness of these tensors to compute the corresponding shape derivatives.  相似文献   

16.
王旭  仲政 《力学学报》2003,35(6):690-696
推导了当考虑热效应时十次对称二维准晶体平面应变问题的通解表示.作为应用,采用所获得的通解首先得到了十次对称二维准晶体中的一个点热源所引起的声子场和相位子场,给出了点热源所引起的声子场和相位子场应力分量的解析表达式;接着获得了在均匀热流作用下十次对称二维准晶体中-绝缘椭圆孔洞所引起的热应力问题的弹性解答,给出了沿椭圆边界环向应力分布的解析表达式;当椭圆的短轴趋于零时,则获得了裂纹问题的解答,给出了应力强度因子、裂纹表面张开位移及能量释放率的解析表达式;推导了在任意热载荷作用下裂尖附近的渐近场.  相似文献   

17.
The article presents an analytical solution for magneto–thermo–electro–elastic problems of a piezoelectric hollow cylinder placed in an axial magnetic field subjected to arbitrary thermal shock, mechanical load and transient electric excitation. Using an interpolation method solves the Volterra integral equation of the second kind caused by interaction among magnetic, thermal, electric and mechanical fields, the electric displacement is determined. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement, electric potential and perturbation of the magnetic field vector in the piezoelectric hollow cylinder are obtained by means of Hankel transforms, Laplace transforms, and inverse Laplace transforms. From sample numerical calculations, it is seen that the present method is suitable for a piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation, and the result carried out may be used as a reference to solve other transient coupled problems of magneto–thermo–electro–elasticity.  相似文献   

18.
Exact expressions for the caustics generated by the reflection of light surrounding crack tips in perfectly plastic materials under plane stress loading conditions and tensile tractions at infinity (mode I) are derived. Two individual cases are examined involving two different yield criteria. The first case uses an approximation of the Mises yield condition, where in the principal stress plane two intersecting parabolas replace the standard ellipse. The second case uses the Tresca yield condition where the mode I caustic is obtained as a limit of an elliptical hole in a perfectly plastic material. In both cases, kinematically admissible velocity fields are employed to obtain strain fields from which the theoretical caustics are predicted.  相似文献   

19.
基于线性压电动力学理论,采用波函数展开法、保角映射以及复变函数,对含非圆孔洞无限大压电薄板弹性波的散射及动应力集中问题进行了分析,给出了其动弯矩集中系数(DMCF)的解析表达式.为说明问题,以PZT-4为例,讨论了外加电场、椭圆孔长短半轴比、椭圆孔倾角以及入射波频率对含圆孔和椭圆孔无限大压电薄板弹性波散射的影响,并分别...  相似文献   

20.
This work investigates the second order deformation of a uniformly thick compressible isotropic elastic sheet with an axial cylindrical hole. The sheet is clamped at infinity and is subjected to a constant angular deformation on the interior boundary of the hole. The mathematical solution is formulated in terms of Weber-Orr transforms which are then numerically inverted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号