首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soot formation from acetylene–diacetylene mixtures was experimentally studied under isothermal conditions. It was found that new soot particles were formed only from diacetylene, whereas acetylene was consumed only in particle growth. Thus, diacetylene exhibited a higher activity in the formation of new soot particles, as compared with acetylene, which is a soot-forming agent in mixtures with other hydrocarbons.  相似文献   

2.
The nonisothermal nature of hydrocarbon pyrolysis explains the differences in the critical temperatures of soot formation in the experimental studies of these processes. When reaction heats are taken into account, the critical temperatures become close to 1600 K for all the systems studied. The estimated standard enthalpy of carbon atom formation in the composition of soot particles is δHf, z. ≈ 11 ±6 kJ/mol. A kinetic model is proposed for soot formation in ethylene pyrolysis that describes the experimental data. The calculated temperature of soot particles may differ substantially depending on the choice of a model for energy exchange in collisions.  相似文献   

3.
Soot formation in the pyrolysis of benzene, methylbenzene, and ethylbenzene and in the oxidative pyrolysis of benzene in shock waves has been investigated using an absorption-emission technique. Even in the presence of small amounts of oxygen, soot formation in the pyrolysis of these hydrocarbons is accompanied by a decrease in the temperature of the reacting mixture. The soot yield has been measured as a function of temperature over wide initial reactant concentration ranges. A new, larger value was obtained for the coefficient of light absorption by soot particles at a wavelength of 632.8 nm. A revised, substantially modified kinetic model is suggested for soot formation. This model has been verified against experimental data available from the literature on the time profiles of the concentrations of some key components at the early stages of pyrolysis and oxidation of various hydrocarbons in a wide range of process conditions. The model reproduces fairly well the time dependences of the soot yield and soot particle temperature measured in this study for benzene, methylbenzene, and ethylbenzene pyrolysis.  相似文献   

4.
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly-sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac-tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.  相似文献   

5.
Soot formation upon the pyrolysis of binary and ternary mixtures of various hydrocarbons is studied. The experimental values of the specific surface areas Ssp of soot particles are compared to the calculated values obtained assuming that any of the hydrocarbons in the mixture are inhibitors. Analysis of the results obtained for the mixtures containing acetylene shows that, when the acetylene concentration is higher than a certain value, the nuclei of soot particles are formed from acetylene, whereas other hydrocarbons participate in  相似文献   

6.
A model is developed which describes simultaneously occurring processes of the initial hydrocarbon pyrolysis, nucleation, surface growth, and coagulation of soot particles. The model permits one to find the size distribution of the primary soot particles up to size 30–40 nm using a relatively small set of equations. The computed time dependence of soot particle concentration agrees satisfactorily with available experimental data. The existence of two limiting stages of the soot formation is revealed.  相似文献   

7.
The formation of soot particles in the pyrolysis and oxidation of various aromatic and aliphatic hydrocarbons in argon behind reflected shock waves has been investigated by computational and theoretical methods. The hydrocarbons examined include methane, ethane, propane (aliphatic hydrocarbons with ordinary bonds), acetylene, ethylene, propylene (aliphatic hydrocarbons with multiple bonds), benzene, toluene, and ethylbenzene (simplest aromatic hydrocarbons). Soot formation in the pyrolysis and oxidation of both aromatic and aliphatic hydrocarbons can be simulated in detail within a unified kinetic model. The predictive power of the unified kinetic model has been verified by directly comparing the calculated kinetic data for the formation of products and reactive radicals in the pyrolysis and oxidation of various hydrocarbons to the corresponding experimental data. In all calculations, all the kinetic parameters of the unified kinetic model were strictly fixed. A good quantitative fit between the data calculated via the unified kinetic model and experimental data has been attained.  相似文献   

8.
Wagner  H. Gg.  Emelianov  A. V.  Eremin  A. V.  Jander  H. 《Kinetics and Catalysis》2003,44(4):463-470
Various carbon particles formed by the pyrolysis of C3O2 and C2H2 behind shock waves in the temperature range 1200–3800 K are studied. The formation of the condensed carbon particles is observed directly by the multichannel detection of the time profiles of the extinction of the medium in the UV, visible, and near-IR spectral regions. The samples of carbon material deposited on the walls of a shock tube after an experiment are analyzed using transmission electron microscopy with different resolutions and electron microdiffraction. Particles formed from C3O2 and C2H2 at 1500–2000 K are 10–30 nm in size and look like usual soot. The absence of molecular hydrogen in C3O2 only results in faster formation and graphitization. At 2100–2600 K, the formation of particles is retarded, and the yield of the carbon particles decreases for both substances. After experiments on pyrolysis of C3O2 at these temperatures, giant spherical particles up to 700 nm in size are found on the walls of the shock tube. Carbon particles formed at the highest temperatures (2700–3200 K) in C3O2 pyrolysis have the high degree of crystallinity of particles.  相似文献   

9.
The possibility of predicting on a purely theoretical basis the existence of some “elementary” particles composing chemical particles (atoms, molecules) is studied. For this purpose the notion of Fock theories in separable Hilbert spaces is introduced. By using the mathematical structure of Fock theory—which is a nontrivial generalization of the Fock space—the notion of particle as sharp entity is defined. It is proved that chemical changes cannot be described by those Fock theories, which consider particles as sharply defined entities. This is a consequence of quantum-mechanical dynamical postulate concerning time evolutions of conservative systems. Finally it is shown that a category of Fock theories may describe changes in the number of chemical particles during conservative evolutions. This result is naturally obtained if the hypothesis about existence of some “elementary particles” composing chemical particles is accepted. Another simultaneously obtained conclusion is that chemical particles involved in chemical processes cannot be sharply defined.  相似文献   

10.
The behavior of Co−MgO catalysts in the reaction of CO disproportionation was studied in the temperature range up to 800°C. Two temperature regions that differ by the morphology of graphite produced (“egg-shells” or nanotubes) were detected. The experimental data obtained were analyzed in terms of the phase equilibria “amorphous carbon”—“carbon solution in metallic Co” and “graphite”— “carbon solution in metallic Co”. Under certain assumptions, the Co° particles are considered to dissolve amorphous carbon under the reaction conditions and transform to oversaturated fluidized carbon-cobalt solution, these fluidized particles being responsible for the formation of carbon nanotubes.  相似文献   

11.
Standardization methods in activation analysis with charged particles are studied critically. Several approximate standardization methods that do not require knowledge of the excitation function are compared with the “numerical integration method” using excitation function data from the literature. It is shown that these methods yield accurate results if the threshold energy of the considered reaction is high and if sample and standard have a comparable Z value. A method that gives a rapid estimate of the maximum possible error is also presented. It is shown that for the “numerical integration method” the accuracy of the excitation function data has only a small influence on the overall accuracy. The influence of the accuracy of stopping power data and of possible deviations from Bragg's rule for light element standards is also considered. “Bevoegdverklaard navorser” of the NFWO.  相似文献   

12.
郑世军 《高分子科学》2012,30(2):209-216
Liquid crystalline(LC) polymers with a shish-kebab-type moiety on their cross-conjugated(p-phenylene)s-poly(p-phenylenevinylene) s main chains were synthesized through Gilch polymerization in order to develop a kind of polymers available for linearly polarized white-light-emitting from single chain.In this system,the 2,5-bis(4’-alkoxyphenyl)benzene as the "kebabs" connects with poly(p-phenylenevinylene)(PPV) main chain backbone using its molecular gravity center and the PPV as the "shish" or "skewer"(the "shish-kebab").The polymers possess desirable properties such as excellent solubility and liquid crystalline properties.To drop the "kebabs" of the 2,5-bis(4’-alkoxyphenyl)benzene into the orientation microgroove of aligned polyimide film,not only the "shish" of polymer main chain can be aligned by the virtue of orientation of "kebabs" but also the uniform cross-conjugated structure between the "kebabs" and "shish" can be broken. Then,the alignment of the polymer main chain showed yellow light emission and was also accompanied by orientation of the LC side chains showing blue light emission,this gave rise to a notable linearly polarized white fluorescence.  相似文献   

13.
A hypothesis on the correlation between the origin of “cold” (∼53 K) water molecules released by a growing crack and a low (∼123 K) temperature of stretched and then thermoelastically cooled polymer chains that ruptured at the crack top is advanced. A mechanism behind the formation of “cold” water molecules is suggested. It includes their “soft” desorption due to mechanical action onto thermoelastically cooled side groups with adsorbed cooled water molecules from an unloading wave that is induced by the rupture of the main chain and that travels along it.  相似文献   

14.
A study of the pyrolysis of two hydrocarbons, C2H2 and C2H4, at different temperatures has been carried out in order to compare their behaviour in terms of soot and gas yields and gas composition. Pyrolysis experiments have been performed in the same conditions for both hydrocarbons: an inlet hydrocarbon concentration of 15,000 ppmv and a temperature range of 1000–1200 °C. For C2H2 and C2H4 pyrolysis tests, the results present the same trend when increasing the temperature: an increase in soot yield, a decrease in gas yield and a similar evolution of the outlet gases. Comparatively, it can be observed that acetylene is a more sooting hydrocarbon than ethylene for a given temperature. Additionally, the study of soot reactivity with O2 and NO shows that the soot samples obtained from ethylene show a slightly higher reactivity towards O2 and NO than the soot samples formed from acetylene.  相似文献   

15.
A radio frequency (rf) discharge has been utilized to study the decomposition of benzene. SEM inspection has shown that the size of soot particles ranged from 0.5 to several μm. The soot deposited on silicon wafers was analyzed by gas chromatography/mass spectrometry (GC/MS). It was shown that the main components of the soot are polyphenyls (biphenyl and terphenyls) and a trace amount of polycyclic aromatic hydrocarbons (PAHs). Acetylene and hydrogen have been detected by plasma diagnostics techniques using Fourier transform infrared (FTIR) and optical emission spectroscopic techniques. However, GC/MS analysis has shown that the relative yields of PAHs are much less than those of polyphenyls, which indicates that the conventional hydrogen abstraction-acetylene addition (HACA) model for soot formation is not applicable to the benzene plasma due to the reason of temperature. The rf power, the carrier gas flow-rate, the relative yields of polyphenyls, and plasma temperatures were correlated. The reaction pathways of benzene elimination and soot formation in plasma are discussed. This study has provided a new route to control the contamination due to PAHs.  相似文献   

16.
17.
This experiment involving diesel fuel pyrolysis was performed to study the process of soot formation without oxidation. The effects of temperature, residence time, and lubricating oil presence on soot formation were investigated through measurement of particle size distribution, morphology, and C/H ratio as well as through thermal analysis. The results show that the formation of soot during diesel pyrolysis depended strongly on both temperature and residence time. The critical temperature for the creation of soot with a primary particle diameter of 20 nm was about 1100 °C. Greater temperatures and residence times resulted in diesel soot particles that were more mature, i.e., with a higher C/H ratio, larger particle size, and higher ignition temperature. The carbonization of diesel soot through pyrolysis was also weakly affected by the addition of 5% lubricating oil to the diesel fuel. The results of this experiment provide information for modeling the formation of diesel soot without oxidation as well as for developing soot generators for after-treatment systems.  相似文献   

18.
《Mendeleev Communications》2022,32(5):700-702
Kinetic modeling of pyrolysis of acetylene diluted with argon showed a strong influence of small additives of oxygen on the routes of formation of soot nuclei. The influence of oxygen on various channels of formation and consumption of propargyl radicals C3H3, which are important precursors of soot formation, as well as the fundamental possibility of controlling the process of soot formation and its properties are considered.  相似文献   

19.
Cellular carbon has been prepared by pyrolysis of a propane—butane mixture in a flow reactor at 700–1250 K. Its structural characteristics were studied by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and adsorption methods. It was shown that cell-type carbon possesses a unique structure in contrast to carbon composite “Sibunnit” and filamentous carbons and it may be a promising support for catalyst preparation.  相似文献   

20.
An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号