首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature-responsive microspheres were fabricated for the purpose of releasing protein in responsive to surrounding temperature changes. Temperature-responsive polymer, Pluronic was synthesized into block copolymers of poly(epsilon-caprolactone)-Pluronic with two different chain lengths of poly(epsilon-caprolactone). Microspheres loaded with proteins were prepared by a W/O/W emulsion method. The surface morphology was examined by scanning electron microscopy, showing that microspheres with diblock copolymers had porous structures due to hydrophilicity of Pluronic blocks. After incubating the microsphere at 37 degrees C for 7 days, temperature-responsive protein release was monitored with alternating temperature changes between 20 and 37 degrees C. The protein release was attenuated when the microsphere was incubated at 20 degrees C but the release rate was recovered at 37 degrees C, confirming variable release rate according to the temperature changes. The variable release rate of protein was dependent on the length of poly(epsilon-caprolactone) blocks attached to Pluronic.  相似文献   

2.
报道了由正负离子表面活性剂与高聚物混合溶液形成的一种可用于蛋白质的分离及分析的新型双水相萃取体系.研究了正负离子表面活性剂(溴化十二烷基三乙铵/十二烷基硫酸钠)分别与葡聚糖和聚乙二醇混合双水相体系的形成规律、相行为及牛血清蛋白和溶菌酶在双水相体系中的分配.通过在高聚物分子中接上亲和配基,研究蛋白质在双水相体系中的亲和分配.结果表明,在该体系中,表面活性剂与高聚物分别富集于不同相中.升高温度及加入无机盐均可促进双水相体系的形成,不同蛋白质可分配于不同的相中.亲和配基的引入极大地增强了蛋白质分配的选择性.  相似文献   

3.
In this work, phase diagrams of aqueous two-phase systems (ATPS) containing PEO–PPO–PEO block copolymers and potassium phosphate as well as the partitioning behavior of insulin in these systems are presented. Experiments aimed at the identification of the effects of copolymer structure (by varying the number of EO units per polymer molecule), temperature (283.15 and 298.15 K) and pH (5.0 and 7.0) on the phase behavior of these systems were carried out. The results indicated the enlargement of the two-phase region upon increasing the temperature, pH and copolymer hydrophobicity (expressed as the PO/EO ratio in the copolymer molecule). Experimental measurements of the partitioning of human insulin in these ATPS also indicated the dependency of the partition coefficients on temperature, pH, and copolymer hydrophobicity, with the latter being the most influential factor. Finally, experimental data on the phase behavior and insulin partitioning were correlated using an excess Gibbs energy virial-type model modified in order to account for coulombic interactions and ionization equilibrium between the various forms of the phosphate ion.  相似文献   

4.
蛋白质在表面活性剂与高分子共组双水相体系中 的分配   总被引:4,自引:0,他引:4  
肖进新  黄建滨  何煦  暴艳霞   《化学学报》2000,58(7):922-924
高分子和正负离子表面活性剂混合物可形成一种新型双水相体系。研究蛋白质在溴化十二烷基三乙铵/十二烷基硫酸钠与聚氧乙烯(EO)-聚氧丙烯(PO)嵌段共聚物(EO~2~0PO~8~0)共组双水相体系中的分配。通过在高分子接上亲和配基,研究蛋白质在带有亲和配基高分子的双水相体系中的分配。将表面活性剂富集相稀释或加热高分子富集相,又可形成新的双水相体系,由此可进行蛋白质的多步分配。在蛋白质的分配完成之后,通过将表面活性剂富集相进一步稀释或将高分子富集相加热至高分子浊点以上可将表面活性剂和高分子与目标蛋白质分离。正负离子表面活性剂和高分子还可以循环使用。  相似文献   

5.
The formation of micelles of Pluronic block copolymers in poly(ethylene glycol) (PEG) was studied using fluorescence, solubilization measurements, and frozen fracture electron microscopy (FFEM) methods at 40 degrees C. It was discovered that surfactants L44 (EO(10)PO(23)EO(10)), P85 (EO(26)PO(40)EO(26)), and P105 (EO(37)PO(56)EO(37)) can form micelles in PEG 200 (PEG with a nominal molecular weight of 200), and the critical micellization concentration (CMC) decreases with increasing molecular weight of the surfactants. The size of the micelles formed by these Pluronic block copolymers is in the range of 6-35 nm. The CMC values in PEG 200 are higher than those in aqueous solutions.  相似文献   

6.
A block copolymer of propylene oxide (PO) and ethoxyethyl glycidyl ether (EEGE), (PO)(2)(EEGE)(6)(PO)(2), that has been found to possess lower critical solution temperature properties in water in the temperature range below 20 degrees C was mixed at 1:0.1, 1:1, and 1:10 weight ratios with commercially available Pluronic (L64 or P85) block copolymers. The cooperative association of the copolymers in aqueous solution was studied by dynamic light scattering over a wide temperature range (5-60 degrees C). At lower temperatures, the systems containing either L64 or P85 behave similarly irrespective of the composition: three species corresponding to (PO)(2)(EEGE)(6)(PO)(2) unimers, Pluronic-dominated mixed micelles, and large (50-60 nm in radius) composite (PO)(2)(EEGE)(6)(PO)(2)/Pluronic aggregates were identified. At a certain temperature, which is composition-dependent, the systems phase-separate [(PO)(2)(EEGE)(6)(PO)(2)/L64 1:0.1], enter an interval of instability [(PO)(2)(EEGE)(6)(PO)(2)/L64 1:1 and 1:10], or rearrange by dissociation of the large composite particles [(PO)(2)(EEGE)(6)(PO)(2)/P85]. The presence of a Pluronic micellar peak in the relaxation time distribution at lower temperatures, the dimensions of the composite particles, and the different behavior of the systems at elevated temperatures are discussed. A possible application of the thermosensitive mixtures in delivery/release of active substances is suggested.  相似文献   

7.
Novel Pluronic/heparin composite nanocapsules that exhibit a thermally responsible swelling and deswelling behavior were synthesized. Pluronic F-127 preactivated with p-nitrophenyl chloroformate at its two terminal hydroxyl groups was dissolved in a methylene chloride phase. The organic phase was dispersed in an aqueous phase containing heparin. At an organic/aqueous interface, Pluronic-cross-linked heparin nanocapsules were produced. They exhibited a 1000-fold volume transition (ca. 336 nm at 25 degrees C; ca. 32 nm at 37 degrees C), and a reversible swelling and deswelling behavior when the temperature was cycled between 20 and 37 degrees C. The reversible volume transition of Pluronic nanocapsules was caused by micellization and demicellization of cross-linked Pluronic polymer chains within the nanocapsule structure in response to temperature. The morphological characters were investigated with transmission electron microscopy and small angle neutron scattering. Pluronic/heparin nanocapsules had an aqueous fluid-filled hollow interior with a surrounding shell layer below the critical temperature, but they became a collapsed core/shell structure similar to that of Pluronic micelles above it.  相似文献   

8.
The self-assembly of Pluronic block copolymers in dispersions of single-wall carbon nanotubes (SWNT) was investigated by spin probe electron paramagnetic resonance (EPR) spectroscopy. Nitroxide spin labeled block copolymers derived from Pluronic L62 and P123 were introduced in minute amounts into the dispersions. X-band EPR spectra of the SWNT dispersions and of native polymer solutions were measured as a function of temperature. All spectra, below and above the critical micelle temperature (CMT), were characteristic of the fast limit motional regime. The temperature dependence of the 14N isotropic hyperfine coupling, aiso, and the rotational correlation time, tauc, were determined. It was observed that, below the CMT, EPR does not distinguish between chains adsorbed on SWNT and free chains. Above CMT, substantial differences were observed: in the native solution, the Pluronics spin labels experience only one environment, Sm, assigned to spin labels in the corona of the Pluronic micelle, whereas in the SWNT dispersions, in addition to Sm, a second population of nonaggregated, individual chains, Si, is observed. The relative amounts of Sm and Si were found to depend on the relative concentrations of the Pluronic and SWNT. Furthermore, the aggregates formed in the SWNT dispersions do not show the typical increase in chain-end mobility as a function of temperature, observed in the post-CMT regime of the native Pluronic solutions. This suggests a larger dynamical coupling among aggregated chains in the presence of the SWNT as compared to the native micelles. The overall findings are consistent with the formation of a new type of aggregates, composed of a SWNT-polymer hybrid.  相似文献   

9.
It is of increasing importance to develop efficient purification methods for recombinant proteins where the number of steps can be minimised. The aim has been to establish a method for predicting the partitioning of the wild-type target protein in an aqueous two-phase system, and with this as basis, develop fusion tags and optimise the phase system for enhanced partitioning of the target protein. The surface of the lipolytic enzyme cutinase from Fusarium solani pisi was investigated with a computer program, Graphical Representation and Analysis of Surface Properties (GRASP). The accessible surface areas for the different amino acid residues were used together with peptide partitioning data to calculate the partition coefficient for the protein. The separation system was composed of a thermoseparating random copolymer of ethylene oxide and propylene oxide. Breox PAG 50A 1000, as top phase forming polymer and a hydroxypropyl starch polymer, Reppal PES 200, as bottom phase polymer. The calculated partition coefficient for the wild-type protein (K= 1.0) agreed reasonably well with the experimentally determined value (K=0.85). Genetic engineering was used to construct fusion proteins expressed in Saccharomyces cerevisiae based on cutinase and peptide tags containing tryptophan, to enhance the partitioning in aqueous two-phase systems. The partitioning of the cutinase constructs could qualitatively be predicted from peptide partitioning data, i.e. the trends in partitioning could be predicted. A spacer peptide introduced between protein and tag increased the partitioning of the protein towards the ethylene oxide-propylene oxide (EOPO) copolymer top phase. The aqueous two-phase system was modified by addition of detergent to increase the partitioning of the cutinase variants towards the EOPO copolymer phase. Triton and a series of C12En detergents selectively increased the partitioning of cutinase constructs with (WP)4-based tags up to 14 times compared to wild-type cutinase. The protein partition could almost quantitatively be predicted from the peptide partition data.  相似文献   

10.
The phase behavior of a thermoseparating cationic hydrophobically modified ethylene oxide polymer (HM-EO) containing tertiary amines has been investigated at different pH, salt and sodium dodecyl sulfate (SDS) concentrations, in order to find a water/HM-EO two-phase system suitable for protein partitioning. The used polymer forms micellar aggregates that can be charged. By changing pH and SDS concentrations the netcharge of the SDS/HM-EO aggregate can be shifted from positive to negative. Bovine serum albumin (BSA) and lysozyme were partitioned in the thermoseparated two-phase systems of the cationic polymer at different pH, salt and SDS concentrations. The dominant attractive interactions between the polymer aggregates and the studied proteins were shown to be of electrostatic (Coulomb) nature rather than hydrophobic interaction. At low ionic strength the positively charged polymeric aggregates attracted negatively charged BSA and repelled positively charged lysozyme. Upon addition of SDS the negatively charged aggregates attracted lysozyme and repelled BSA. Thus, it was possible to direct proteins with different charges to the polymeric phase and redirect them to a polymer-depleted phase by changing the netcharge of the polymeric aggregates. The effect of different salts on the partitioning of BSA in a system of slightly positively charged HM-EO was studied. NaCl and KBr have a significant effect on driving the BSA to the polymer-depleted phase, whereas KF and K2SO4 have a smaller effect on the partitioning. The cloud point temperature of the charged polymer decreased upon addition of SDS near the isoelectric molar ratio of SDS to polymer and also upon salt addition. In the latter case the decrease was smaller than expected from model calculations based on Flory-Huggins theory, which were performed for a charged thermoseparating polymer at different charges and salt concentrations.  相似文献   

11.
The phase behavior (temperature vs composition) and microstructure for the two binary systems Pluronic 25R4 [(PO)19(EO)33(PO)19]-water and Pluronic 25R2 [(PO)21(EO)14(PO)21]-water have been studied by a combined experimental approach in the whole concentration range and from 5 to 80 degrees C. The general phase behavior has been identified by inspection under polarized light. Precise phase boundaries have been determined by analyzing 2H NMR line shape. The identification and microstructural characterization of the liquid crystalline phases have been achieved using small-angle X-ray scattering (SAXS). The isotropic liquid solution phases have been investigated by self-diffusion measurements (PGSE-NMR method). 25R2 does not form liquid crystals and is miscible with water in the whole concentration range; with increasing temperature, the mixtures split into water-rich and a copolymer-rich solutions in equilibrium. 25R4 shows rich phase behavior, passing, with increasing copolymer concentration, from a water-rich solution to a lamellar and copolymer-rich solution. A small hexagonal phase, completely encircled in the stability region of the water-rich solution, is also present. In water-rich solutions, at low temperatures and low copolymer concentrations, the copolymers are dissolved as independent macromolecules. With increasing copolymer concentrations an interconnected network of micelles is formed in which micellar cores of hydrophobic poly(propylene oxide) are interconnected by poly(ethylene oxide) strands. In copolymer-rich solutions water is molecularly dissolved in the copolymer. The factors influencing the self-aggregation of Pluronic R copolymers (PPO-PEO-PPO sequence) are discussed, and their behavior in water is compared to that of Pluronic copolymers (PEO-PPO-PEO sequence).  相似文献   

12.
The aqueous solution properties of a series of polyglycidol-poly(propylene oxide)-polyglycidol (PG-PPO-PG) block copolymers were investigated by means of rheology. The copolymers are considered as analogues to the commercially available Pluronic, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), block copolymers in which the flanking PEO blocks are substituted by blocks of structurally similar PG bearing a hydroxyl group in each repeating monomer unit. In the dilute regime, the samples normally behave as Newtonian fluids. Shear thinning was observed only for the solutions of LGP65 (the copolymer of 50 wt % PG content) as well as at concentrations well above the critical micellization concentration for the rest of the copolymers. The zero shear viscosities exhibited pronounced maxima at PG content of 50 wt % and were found to decrease with increasing temperature. The concentrated solutions were investigated using oscillatory measurements. Large hystereses were observed during the temperature sweeps 15-70-15 degrees C. The evolutions of the loss and storage moduli with frequency, PG content, and temperature displayed transitions from a non-elastic to elastic behavior of the solutions. A phase diagram showing areas of predominant elasticity or fluidity was constructed.  相似文献   

13.
The effects of temperature, polymer composition, and concentration on the micellization and gelation properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers in aqueous solutions were investigated by 1H NMR spectroscopy. It was found that the temperature-dependent behavior of PPO blocks, observed as changes in chemical shift, half-height width, and integral value, could be attributed as an intrinsic tool to characterize the transition states during unimer to micelle formation. The 1H NMR spectral analysis revealed that the hydrophobic part, PPO, of the Pluronic polymers plays a more significant role in the temperature-induced micellization, whereas the transitional behavior of Pluronic polymer, i.e., from micellization to liquid crystals formation, resulted in the drastic broadening of the spectral signals for the PEO, indicating that the PEO segments play a more significant role in the crystallization process. It was also observed that the temperature-dependent changes in the half-height width of the PEO -CH2- signal are sensitive to the liquid crystalline phase formation, which could be attributed to the close packing of spherical micelles at high polymer concentrations or temperatures.  相似文献   

14.
In this study we present a new aqueous two-phase system where both polymers are thermoseparating. In this system it is possible to recycle both polymers by temperature induced phase separation, which is an improvement of the aqueous two-phase system previously reported where one of the polymers was thermoseparating and the other polymer was dextran or a starch derivative. The polymers used in this work are EO50PO50, a random copolymer of 50% ethylene oxide (EO) and 50% propylene oxide (PO), and a hydrophobically modified random copolymer of EO and PO with aliphatic C14H29-groups coupled to each end of the polymer (HM-EOPO). In water solution both polymers will phase separate above a critical temperature (cloud point for EO50PO50 50 degrees C, HM-EOPO, 14 degrees C) and this will for both polymers lead to formation of an upper water phase and a lower polymer enriched phase. When EO50PO50 and HM-EOPO are mixed in water, the solution will separate in two phases above a certain concentration i.e. an aqueous two-phase system is formed analogous to poly(ethylene glycol) (PEG)/dextran system. The partitioning of three proteins, bovine serum albumin, lysozyme and apolipoprotein A-1, has been studied in the EO50PO50/HM-EOPO system and how the partitioning is affected by salt additions. Protein partitioning is affected by salts in similar way as in traditional PEG/dextran system. Recombinant apolipoprotein A-1 has been purified from a cell free E. coli fermentation solution. Protein concentrations of 20 and 63 mg/ml were used, and the target protein could be concentrated in the HM-EOPO phase with purification factors of 6.6 and 7.3 giving the yields 66 and 45%, respectively. Recycling of both copolymers by thermoseparation was investigated. In protein free systems 73 and 97.5% of the EO50PO50 and HM-EOPO polymer could be recycled respectively. Both polymers were recycled after aqueous two-phase extraction of apolipoprotein A-1 from a cell free E. coli fermentation solution. Apolipoprotein A-1 was extracted to the HM-EOPO phase with contaminating proteins in the EO50PO50 phase. The yield (78%) and purification factor (5.5) of apolipoprotein A-1 was constant during three polymer recyclings. This new phase system based on two thermoseparating polymers is of great interest in large scale extractions where polymer recycling is of increasing importance.  相似文献   

15.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

16.
Aqueous two-phase systems for protein separation: a perspective   总被引:1,自引:0,他引:1  
Aqueous two-phase systems (ATPS) that are formed by mixing a polymer (usually polyethylene glycol, PEG) and a salt (e.g. phosphate, sulphate or citrate) or two polymers and water can be effectively used for the separation and purification of proteins. The partitioning between both phases is dependent on the surface properties of the proteins and on the properties of the two phase system. The mechanism of partitioning is complex and not very easy to predict but, as this review paper shows, some very clear trends can be established. Hydrophobicity is the main determinant in the partitioning of proteins and can be measured in many different ways. The two methods that are more attractive, depending on the ATPS used (PEG/salt, PEG/polymer), are those that consider the 3-D structure and the hydrophobicity of AA on the surface and the one based on precipitation with ammonium sulphate (parameter 1/m*). The effect of charge has a relatively small effect on the partitioning of proteins in PEG/salt systems but is more important in PEG/dextran systems. Protein concentration has an important effect on the partitioning of proteins in ATPS. This depends on the higher levels of solubility of the protein in each of the phases and hence the partitioning observed at low protein concentrations can be very different to that observed at high concentrations. In virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. Furthermore, true partitioning behavior, which is independent of the protein concentration, only occurs at relatively low protein concentration. As the concentration of a protein exceeds relatively low values, precipitation at the interface and in suspension can be observed. This protein precipitate is in equilibrium with the protein solubilized in each of the phases. Regarding the effect of protein molecular weight, no clear trend of the effect on partitioning has been found, apart from PEG/dextran systems where proteins with higher molecular weights partitioned more readily to the bottom phase. Bioaffinity has been shown in many cases to have an important effect on the partitioning of proteins. The practical application of ATPS has been demonstrated in many cases including a number of industrial applications with excellent levels of purity and yield. This separation and purification has also been successfully used for the separation of virus and virus-like particles.  相似文献   

17.
This article reviews the results of recent investigations on the macroscopic (phase behavior) and microscopic (microstructure) aspects of the role of cosolvents on the self-assembly of amphiphilic copolymers. A comprehensive account of the systematic studies performed in ternary isothermal systems consisting of a representative poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer (Pluronic P105, EO37PO58EO37), water and a polar cosolvent (such as glycerol, propylene glycol or ethanol) is presented. The effect of cosolvents on the copolymer phase behavior is quantified in terms of the highest cosolvent/water ratio able to maintain the liquid crystalline structures. The effect of cosolvents on the microstructure of the lyotropic liquid crystals is quantified in terms of the degree of relative swelling per cosolvent content per copolymer content, a parameter that characterizes the given cosolvent and copolymer. The set of correlations on the cosolvent effects on the phase behavior or microstructure to the cosolvent physicochemical characteristics (such as octanol/water partition coefficient or solubility parameter) have led to the development of a hypothesis that accounts for the cosolvent effects on the self-assembly of PEO–PPO–PEO block copolymers and can be used to predict them. The rich structural diversity and the potential for a precise and convenient modification of the lyotropic liquid crystalline microstructure of the PEO–PPO–PEO block copolymers is discussed in comparison to the phase behavior of the low-molecular nonionic surfactants.  相似文献   

18.
Pluronics with different structural compositions and properties are used for several applications, including drug delivery systems. We developed a binary mixing system with two Pluronics, L121/P123, as a nano-sized drug delivery carrier. The lamellar-forming Pluronic L121 (0.1 wt%) was incorporated with Pluronic P123 to produce nano-sized dispersions (in case of 0.1 and 0.5 wt% P123) with high stability due to Pluronic P123 and high solubilization capacity due to Pluronic L121. The binary systems were spherical and less than 200-nm diameter, with high thermodynamic stability (at least 2 weeks) in aqueous solution. The CMC of the binary system was located in the middle of the CMC of each polymer. In particular, the solubilization capacity of the binary system (0.1/0.1 wt%) was higher than mono-systems of P123. The main advantage of binary systems is overcoming limitations of mono systems to allow tailored mixing of block copolymers with different physicochemical characteristics. These nano-sized systems may have potential as anticancer drug delivery systems with simple preparation method, high stability, and high loading capacity.  相似文献   

19.
Pluronic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers are grafted with poly(vinyl pyrrolidone) by free radical polymerization of vinyl pyrrolidone with simultaneous chain transfer to the Pluronic in dioxane. This modified polymer has both thermal responsiveness and remarkable capacity to interact with a wide variety of hydrophilic and hydrophobic pharmaceutical agents which is very attractive for medical applications. The chemical structure of the graft copolymers was characterized by FTIR and 1H NMR spectroscopy. Polymerization conditions such as initiators, feed ratio, and reaction times are studied to obtain the ideal graft copolymer.  相似文献   

20.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号