首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
提出一种非线性动力学建模仿真发声系统,分类息肉和麻痹喉声源的方法,为声带疾病分类时参数选择提供了依据。首先介绍息肉和麻痹声带力学模型,耦合声门气流产生喉声源,求取喉声源频率(基频)、基频微扰;提出用庞加莱截面,分岔图对模型振动进行非线性分析;改变声带病理参数及声门下压,分析频率参数和混沌参数李雅普诺夫指数的变化。仿真实验结果表明,声带麻痹减小了发声基频,且只在一定压力范围内出现混沌振荡;息肉声带的混沌则分布在整个压力范围内。根据最大李雅普诺夫指数随声门下压变化的差异性分布,有助于识别并分类声带息肉和声带麻痹。  相似文献   

2.
提出一种非线性动力学建模仿真发声系统,分类息肉和麻痹喉声源的方法,为声带疾病分类时参数选择提供了依据。首先介绍息肉和麻痹声带力学模型,耦合声门气流产生喉声源,求取喉声源频率(基频)、基频微扰;提出用庞加莱截面,分岔图对模型振动进行非线性分析;改变声带病理参数及声门下压,分析频率参数和混沌参数李雅普诺夫指数的变化。仿真实验结果表明,声带麻痹减小了发声基频,且只在一定压力范围内出现混沌振荡;息肉声带的混沌则分布在整个压力范围内。根据最大李雅普诺夫指数随声门下压变化的差异性分布,有助于识别并分类声带息肉和声带麻痹。   相似文献   

3.
发声过程中声带组织振动的黏膜波测量对于声带组织力学特性和病理机制研究具有重要意义。本研究利用多普勒激光测振(Laser Doppler Vibrometer,LDV)和电声门图时间同步方法,对声带上表面的振动过程进行了重建,并基于该结果估计了黏膜波传播速度。通过离体犬喉发声实验,激光测振方法能够得到与高速光学方法相一致的黏膜波速度估计,并且能够重建不同时刻的声带上表面形态,证明了该方法应用于声带上表面振动特性研究的可行性和有效性。然而,由于单点测振的局限和时间同步的要求,稳态发声是保证该方法测量准确性的重要条件。   相似文献   

4.
通过水热法合成了一例新颖的稀土钨多酸化合物H26(C2H8N2H2)K(H2O)[K(H2O)Nd8(H2O)2(W3O12)(SiW10O38)4]·18H2O 1。该化合物的不对称单元由两个[SiW10O38]12-通过一个{Nd4(H2O)12+}结构单元和W3O12连接而成。化合物1簇阴离子通过K离子连接成一维无限链,再通过氢键连接成二维平面结构。针对该化合物,做了一系列表征,测试了其二维相关红外光谱,并对其作了详细分析,结果说明化合物1簇阴离子振动偶极矩对磁...  相似文献   

5.
近红外波段的气体吸收强度低,不利于痕量气体的测量。利用分子在中红外波段的基频吸收特性,使用单个新型室温连续输出量子级联激光器(CW-QCL)结合波长调制光谱技术(WMS)和长程光学吸收池,建立了一套高灵敏度和高精度的大气多组分温室气体同时检测的激光光谱系统。该系统的输出波数范围为2202.8~2205.6 cm-1,覆盖了CO、N2O和H2O的中心吸收谱线。实验测试结果表明:在1 s的时间分辨率下,CO、N2O和H2O的测量精度分别为1.83×10-8,1.86×10-9,1.19×10-4;当满足最佳积分时间(100 s)时,系统的最低检测限可以达到1.8×10-9(CO),0.16×10-9(N2O),1.5×10-5(H2O)。通过长时间测量和分析可知,所提系统部件简单,使用方便,满足大气多组分气体...  相似文献   

6.
将可调谐半导体激光吸收光谱技术应用于高温气体浓度在线检测,谱线参数的准确性非常重要。为利用红外波段进行燃烧生成H2O的浓度在线测量,需要实验校准H2O的谱线参数,尤其是Ar加宽系数,该系数对燃烧反应速率测量和机理验证至关重要。采用半导体激光器作为光源,结合实验室搭建的谱线参数测量系统,采集了1.39 μm波段附近H2O的4条吸收谱线信号,获得了谱线线强、自加宽系数和N2加宽系数,与HITRAN数据库和文献结果进行了对比,均吻合较好。首次系统地获得了该波段谱线的Ar加宽系数。在谱线参数确定基础上,获得了在反射激波高温条件下H2/O2/Ar燃烧生成H2O的浓度随时间的演变曲线,验证了相应燃烧动力学机理。结果为利用该波段进行含氢燃料燃烧过程H2O浓度测量及相关高温燃烧动力学研究提供了可靠的实验依据。  相似文献   

7.
于洋  杨平  杨理践  梁春宴 《声学学报》2015,40(4):546-554
为解决腐蚀声发射源特征提取和识别的难题,直接从理论上证明了腐蚀声发射监测的有效性并推导出声发射信号特征。气泡破裂声发射信号幅值近似与气泡半径平方和液位高度成正比,频率与气泡半径成反比;钢板及其腐蚀产物开裂声发射信号幅值与开裂位置局部应力强度成正比,频率与裂纹扩展速度成正比,与裂纹扩展距离成反比。用低频和高频两套声发射系统,同时长时间监测Q235钢板在10%FeCl3·6H2O、10%FeCl3·6H2O加0.01 mol/L HCl混合液、5%CuSO4·5H2O溶液中的腐蚀情况,辅以监测钢板及钢板腐蚀产物开裂作为验证实验。通过对声发射信号的参数及谱分析,得出不同声发射源可以通过撞击数及功率谱在频域的分布来有效区分。实验结果与理论分析相吻合,研究结果对腐蚀声发射监测技术具有重要指导意义。   相似文献   

8.
赵巍  汪家道  刘峰斌  陈大融 《物理学报》2009,58(5):3352-3358
采用第一性原理研究了H2O分子在Fe(100),Fe(110),Fe(111)三个高对称晶面上的表面吸附.结果表明,H2O分子在三个晶面上的最稳定结构皆为平行于基底表面的顶位吸附结构.H2O分子与三个晶面相互作用的吸附能及几何结构计算结果表明H2O分子与三个晶面的相互作用程度不同,H2O分子与Fe(111)晶面的相互作用最强,其次是Fe(100),相互作用最弱的是Fe(110)表面,而这与晶面原子 关键词: 第一性原理 Fe单晶表面 2O分子')" href="#">H2O分子 分子吸附  相似文献   

9.
H2O和CH4在气候变化过程中起着关键作用,实时在线测量H2O和CH4浓度一直都是国内外学者研究的热点问题之一。利用1.653 μm可调谐半导体激光器作光源,结合反射率为99.997 6%的两片高反射镜组成离轴腔增强吸收光谱装置,开展了H2O和CH4的高灵敏度测量研究。离轴腔增强系统的有效吸收光程通过吸收面积-浓度关系法来标定,吸收面积-浓度关系法的可行性首先通过已知光程的光学吸收池进行验证,确定有效后用于标定离轴腔增强系统的有效光程。结果表明,基长为21 cm的离轴腔增强系统的有效吸收光程达到了8 626.3 m。当谐振腔内压力为5.06 kPa时,利用7组不同浓度的CH4标准气体(0.2~1.4 μmol·mol-1)对系统进行了线性响应标定测试,得到了CH4吸收的积分面积与浓度拟合关系曲线。系统的稳定性、可实现的最小探测灵敏度等信息通过Allan方差进行分析,结果表明系统对探测CH4的最佳平均时间为100 s,最小可探测浓度极限为7.5 nmol·mol-1;系统对探测H2O的最佳平均时间为200 s,最小可探测浓度极限为55 μmol·mol-1。对提高系统测量精度的数据处理方法也进行了分析研究,结果表明相比于多次平均方法,Kalman滤波能显著的提高测量精度,而且缩短了系统的响应时间。最后,利用搭建的离轴腔增强实验系统结合Kalman滤波数据处理方法对实际大气中CH4和H2O浓度进行了连续两天的测量,CH4每天平均的浓度分别为2.1和2.08 μmol·mol-1,H2O每天平均的浓度分别为11 515.6和11 628.6 μmol·mol-1,由此可知建立的离轴腔增强吸收光谱装置能够用于大气CH4和H2O的测量,另外建立的系统也可用于相关工业领域的高灵敏度CH4和H2O监测。  相似文献   

10.
提出一种声带动力学模型参数反演方法,从发声机理角度对声带病变嗓音进行有效区分。依据声带生理组织和伯努利定律构建声带动力学模型,确定模型优化参数向量,耦合声门气流获取模型声门波;利用迭代自适应逆滤波算法获得实际嗓音声门波作为目标声门波;采用遗传优化算法提出通过匹配目标和模型声门波特征参数实现模型参数反演。实验结果表明,表征声门波的各时频域参数匹配相对误差不超过2%;依据反演所获模型参数提出去除声门下压影响的平均归一化缩放系数,克服声带非对称性特征在区分病变嗓音方面的不足,实现病理嗓音的全面有效区分。   相似文献   

11.
In this paper, a finite-element model is used to simulate anterior-posterior biphonation [Neubauer et al., J. Acoust. Soc. Am. 110(6), 3179-3192 (2001)]. The anterior-posterior stiffness asymmetric factor and the anterior-posterior shape asymmetric factor describe the asymmetry properties of vocal folds. Spatiotemporal plot, spectral analysis, anterior-posterior fundamental frequency ratio, cross covariation function, and correlation length quantitatively estimate the spatial asymmetry of vocal fold oscillations. Calculation results show that the anterior-posterior stiffness asymmetry decreases the spatial coherence of vocal fold vibration. When the stiffness asymmetry reaches a certain level, the drop in spatial coherence desynchronizes the vibration modes. The anterior and posterior sides of the vocal fold oscillate with two independent fundamental frequencies (f(a) and f(p)). The complex spectral characteristics of vocal fold vibration under biphonation conditions can be explained by the linear combination of f(a) and f(p). Empirical orthogonal eigenfunctions prove the existence of higher-order anterior-posterior modes when anterior-posterior biphonation occurs. Then, it is found that the anterior-posterior shape asymmetry also decreases the spatial coherence of vocal fold vibration, and shape asymmetry is a possible reason for anterior-posterior biphonation.  相似文献   

12.
The change in fundamental frequency with subglottal pressure in phonation is quantified on the basis of the ratio between vibrational amplitude and vocal fold length. This ratio is typically very small in stringed instruments, but becomes quite appreciable in vocal fold vibration. Tension in vocal fold tissues is, therefore, not constant over the vibratory cycle, and a dynamic tension gives rise to amplitude-frequency dependence. It is shown that the typical 2-6 Hz/cm H2O rise in fundamental frequency with subglottal pressure observed in human and canine larynges is a direct and predictable consequence of this amplitude-frequency dependence. Results are presently limited to phonation in the chest register.  相似文献   

13.
Bifurcation analysis was applied to vocal fold vibration in excised larynx experiments. Phonation onset and vocal instabilities were studied in a parameter plane spanned by subglottal pressure and asymmetry of either vocal fold adduction or elongation. Various phonatory regimes were observed, including single vocal fold oscillations. Selected spectra demonstrated correspondence between these regimes and vocal registers noted in the literature. To illustrate the regions spanned by the various phonatory regimes, two-dimensional bifurcation diagrams were generated. Many instabilities or bifurcations were noted in the regions of coexistence, i.e., regions in which the phonatory regimes overlap. Bifurcations were illustrated with spectrograms and fundamental frequency contours. Where possible, results from these studies were related to clinical observations.  相似文献   

14.
Well-known multimass models of vocal folds are useful to describe main behavior observed in human voicing but their principle of functioning, based on harmonic oscillation, may appear complex. This work is designed to show that a simple one-mass model ruled by laws of relaxation oscillation can also depict main behavior of glottis dynamic. Theory of relaxation oscillation is detailed. A relaxation oscillation model is assessed through a numerical simulation using conventional values for tissue characteristics and subglottal pressure. As expected, raising the mass decreases the fundamental frequency and increases the amplitude of vocal fold vibration: for a mass ranging from 0.01 to 0.4 g, F0 decreased from 297.5 to 42.5 Hz and vibrational amplitude increased from 1.26 to 3.25 mm (for stiffness k=10Nm(-1), damping r=0.015 N s m(-1), and subglottal pressure=1 kPa). Stiffness value has the opposite effect. The subglottal pressure controls the fundamental frequency with a rate ranging from 20 to 50 Hz/kPa. The vibrational amplitude is also controlled linearly by subglottal pressure from 0.22 to 0.26 mm/kPa. The range of phonation threshold pressure (PTP) is close to the values currently proposed, that is, 0.1 to 1 kPa and varies with the fundamental frequency. The relaxation oscillator is a simple and useful tool for modeling vocal fold vibration.  相似文献   

15.
SUMMARY: The purpose of this investigation was to investigate physical mechanisms of vocal fold vibration during normal phonation through quantification of the medial surface dynamics of the fold. An excised hemilarynx setup was used. The dynamics of 30 microsutures mounted on the medial surface of a human vocal fold were analyzed across 18 phonatory conditions. The vibrations were recorded with a digital high-speed camera at a frequency of 4,000 Hz. The positions of the sutures were extracted and converted to three-dimensional coordinates using a linear approximation technique. The data were reduced to principal eigenfuctions, which captured over 90% of the variance of the data, and suggested mechanisms of sustained vocal fold oscillation. The vibrations were imaged as the following phonatory conditions were manipulated: glottal airflow, an adductory force applied to the muscular process, and an elongation force applied to the thyroid cartilage. Over the range of variables studied, only the variation in glottal airflow yielded significant changes in subglottal pressure and fundamental frequency. All recordings showed high correlation for the distribution of the dynamics across the medial surface of the vocal fold. The distribution of the different displacement directions and velocities showed the highest variations around the superior region of the medial surface. Although the computed vibration patterns of the two largest empirical eigenfunctions were consistent with previous experimental observations, the relative prominence of the two eigenfunctions changed as a function of glottal airflow, impacting theories of vocal efficiency and vocal economy.  相似文献   

16.
This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term "AP (anterior-posterior) biphonation" is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.  相似文献   

17.
The relation between subglottal pressure (Ps) and fundamental frequency (F0) in phonation was investigated with an in vivo canine model. Direct muscle stimulation was used in addition to brain stimulation. This allowed the Ps-F0 slope to be quantified in terms of cricothyroid muscle activity. Results showed that, for ranges of 0-2 mA constant current stimulation of the cricothyroid muscle, the Ps-F0 slope ranged from 10 Hz/kPa to 60 Hz/kPa. These results were compared to similar slopes obtained in a previous study on excised larynges in which the vocal fold length was varied instead of cricothyroid activation. A physical interpretation of the Ps-F0 slope is that the amplitude-to-length ratio of the vocal folds decreases with CT activity, resulting in a smaller time-varying stiffness. In other words, there is less dependence of F0 on amplitude of vibration when the vocal folds are long instead of short.  相似文献   

18.
Quantitative measurement of the medial surface dynamics of the vocal folds is important for understanding how sound is generated within the larynx. Building upon previous excised hemilarynx studies, the present study extended the hemilarynx methodology to the in vivo canine larynx. Through use of an in vivo model, the medial surface dynamics of the vocal fold were examined as a function of active thyroarytenoid muscle contraction. Data were collected using high-speed digital imaging at a sampling frequency of 2000 Hz, and a spatial resolution of 1024 x 1024 pixels. Chest-like and fry-like vibrations were observed, but could not be distinguished based on the input stimulation current to the recurrent laryngeal nerve. The subglottal pressure did distinguish the registers, as did an estimate of the thyroarytenoid muscle activity. Upon quantification of the three-dimensional motion, the method of Empirical Eigenfunctions was used to extract the underlying modes of vibration, and to investigate mechanisms of sustained oscillation. Results were compared with previous findings from excised larynx experiments and theoretical models.  相似文献   

19.
The membranous contact quotient (MCQ) is introduced as a measure of dynamic glottal competence. It is defined as the ratio of the membranous contact glottis (the anterior-posterior length of contact between the two membranous vocal folds) and the membranous vocal fold length. An elliptical approximation to the vocal fold contour during phonation was used to predict MCQ values as a function of vocal process gap (adduction), maximum glottal width, and membranous glottal length. MCQ is highly dependent on the vocal process gap and the maximum glottal width, but not on vocal fold length. Five excised larynges were used to obtain MCQ data for a wide range of vocal process gaps and maximum glottal widths. Predicted and measured MCQ values had a correlation of 0.93, with an average absolute difference of 9.6% (SD = 10.5%). The model is better at higher values of MCQ. The theory for MCQ is also expressed as a function of vocal process gap and subglottal pressure to suggest production control potential. The MCQ measure is obtainable with the use of stroboscopy and appears to be a potentially useful clinical measure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号