首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two supramolecular complexes: [Co(2,6-PDC)(Hdmpz)3]·H2O (1) and [Zn(2,6-PDC)(Hdmpz)2] (2) {2,6-PDC=pyridine-2,6-dicarboxylic acid, Hdmpz=3,5-dimethylpyrazol}, self-assembles via O-H?O and N-H?O hydrogen bondings into supramolecular networks, which are characterized by elemental analyses, IR spectra and single crystal X-ray diffraction analysis. Both of them consist of two-dimensional networks that are stacked together by typical hydrogen bonding interactions (i.e. O-H?O and N-H?O), which often play important roles in the formation of low-dimensional into high-dimensional supramolecular networks. In addition, quantum chemistry calculations and surface photovoltage spectroscopy are performed firstly with the complexes.  相似文献   

2.
The cubic transition metal phosphonates [(t)BuPO3M(2-apy)]4 (M= Zn (1), Co (2)), whose core resembles the D4R SBU of zeolites, have been synthesized from a reaction between the corresponding metal acetate, tert-butylphosphonic acid and 2-aminopyridine (2-apy) at room temperature. X-Ray structure determination reveals that the molecules of 1 and 2, which crystallize in the tetragonal I4(1)/a space group with crystallographically imposed 4 symmetry, form a 3-D supramolecular assembly aided by N-H...O hydrogen bonding. When the same reaction was carried out by using a bridging bidentate Lewis base such as 4,4'-bipyridine, insoluble precipitate is obtained for both zinc and cobalt. In the case of other metal salts such as copper, manganese and nickel, however, one-dimensional polymeric compounds such as [M((t)BuPO3H)2(4,4'-bipy)(H2O)2]n (M= Cu (3), Mn (4)), [(Ni(4,4'-bipy)(H2O)4)((t)BuPO3H)2(H2O)]n (5) have been isolated. The solid-state structures of 3-5 have been determined by single crystal X-ray diffraction studies. Compounds 3 and 4 are isostructural and crystallize in the triclinic P1 space group with two phosphonate ligands coordinated to the metal centers in a [1.100] fashion, whereas in the case of compound 5, the polymeric backbone is formed by Ni-4,4'-bipy units and the phosphonate anions show no bonding interaction to the metal. The 1-D polymeric chains of 3-5 organize in the solid-state as 3-D supramolecular assemblies with the aid of extensive hydrogen bonding interaction between coordinated water molecules and P-OH or P=O groups of the phosphonate ligands.  相似文献   

3.
The cocrystals of adenine and metal (II) quinoline-2-carboxylates (M = Mn2+, Fe2+, Co2+) have been obtained by self-assembly. The complexes are composed of adenine ribbons with the AA22 pairing pattern involving both Watson-Crick and Hoogsteen faces in hydrogen bonding and the neutral molecules of carboxylate positioned in inorganic layers. The very compact supramolecular structure is made by the extensive system of hydrogen bonds and face-to-face pi-pi interactions.  相似文献   

4.
由水热法合成了2个配合物[Co(1,2,4-HBTC)(tib)](1)和[Ni4(1,2,4-BTC)2(tib)4(H2O)2]·(1,2,4-HBTC).9H2O(2)(1,2,4-H3BTC=1,2,4-苯三甲酸,tib=1,3,5-三(1-咪唑基)苯),并用元素分析、红外光谱、X-射线单晶衍射及热重分析等对其进行了表征。晶体结构分析结果表明:配合物1是由Co(Ⅱ)和tib连接形成的二维层状结构,1,2,4-HBTC2-作为端基配体与Co(Ⅱ)配位,而配合物2是通过1,2,4-BTC3-连接[Ni(tib)]2+二维网形成最终的二维多层结构,这2个化合物最终均被氢键连接形成三维超分子结构。  相似文献   

5.
合成了3个新的氢醌金属配合物:[Co(H2cah)(H2O)2].H2O(1),Ni(H2cah)(H2O)2].H2O(2),[Zn(H2cah)(CH3OH)(H2O)].H2O(3)(H4cah=2-(N,N-二羧甲酸氨甲基)氢醌),通过X-射线单晶衍射,红外光谱,元素分析对它们进行了表征。这些配合物均为单核结构,并且通过分子间的氢键形成了无限的超分子网状结构。电化学研究显示配合物1中的Co2+/Co+对和配合物2中的Ni2+/Ni+对的氧化还原是一个不可逆的过程,但是氢醌到半醌之间的转换是一个准可逆的过程。  相似文献   

6.
The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to eight trinuclear complexes: trans-[M(CN)4(mu-CN)2{Ln(H2O)4(bpy)2}2][M(CN)6].8H2O (M = Fe3+ or Co3+, Ln = La3+, Ce3+, Pr3+, Nd3+, and Sm3+). The structures for the eight complexes [La2Fe] (1), [Ce2Fe] (2), [Pr2Fe] (3), [Nd2Fe] (4), [Ce2Co] (5), [Pr2Co] (6), [Nd2Co] (7), and [Sm2Co] (8) have been solved; they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular 3D architecture through hydrogen bonding and pi-pi stacking interactions. A stereochemical study of the nine-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. No significant magnetic interaction was found between the lanthanide(III) and the iron(III) ions.  相似文献   

7.
Cobalt(II) compounds [Co(pyterpy)Cl(2)].MeOH (1.(MeOH)) and [Co(pyterpy)Cl(2)].2H(2)O (1.(2H(2)O)) were synthesized. The compound 1.(MeOH) forms the quasi 3-D networks by making pi-pi stacking between the 1-D chains. The methanol molecules from 1.(MeOH) can be removed by heating, and substituted by absorption of water molecules. The MeOH molecules in 1.(MeOH) are removed by heating at 410 K, and they are substituted by water molecules to form 1.(2H(2)O). 1.(2H(2)O) exhibits a S = (3)/(2) (HS) left arrow over right arrow S = (1)/(2) (LS) spin transition with a thermal hysteresis. We have succeeded in constructing a guest dependent 1-D spin-crossover cobalt(II) compound.  相似文献   

8.
Solvothermal reactions of mixed ligands H(3)BTC and macrocyclic oxamide complexes (ML, M = Cu, Ni) with M(ClO(4))(2)·6H(2)O (M = Co, Zn, Ni and Cd) afford six new complexes, including [M'(4)(BTC)(2)(ML)(2)(OH)(2)(H(2)O)(2)]·2H(2)O (M' = Co, M = Ni, for (1); M' = Zn, M = Ni, for (2); M' = Zn, M = Cu, for (3)), [Ni(3)(BTC)(2)(NiL)(2)(H(2)O)(6)]·2CH(3)OH·2H(2)O (4), [Cd(4)(BTC)(2)(HBTC)(NiL)(4)(H(2)O)]·3H(2)O (5) and [Cd(HBTC)(CuL)]·H(2)O (6) (ML, H(2)L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien; H(3)BTC = 1,3,5-benzenetricarboxylic acid). Complexes 1-3 consist of a 2D layer framework formed by the linkage of M(II)(M = Ni, Cu) and M'(4) (M' = Co, Zn) cluster via the oxamide and BTC(3-) bridges and display a (3,6)-connected network with a (4(3))(2)(4(6).6(6).8(3)) topology. The structure of 4 consists of pentanuclear [Ni(II)(5)] units and arranges in a 1D cluster chain. Complex 5 exhibits a 2D layered structure characterized by 3,4,3-connected (4.6(2))(3)(4.6(3).8(2))(4(2).6(3).8)(4(2).6) topology. Complex 6 possesses a 3D network with sra topology. The magnetic properties of complexes 1 and 4 were investigated.  相似文献   

9.
Solvothermal reactions of trans-stilbene-4,4'-dicarboxylic acid (H(2)STDC) and zinc(ii) acetate in the presence of systematically varied terminal ligands afforded a series of supramolecular architectures with formula [Zn(STDC)(py)(2)].py (1), [Zn(STDC)(bipy)(H(2)O)].0.5py.H(2)O (2), [Zn(STDC)(biql)] (3), [Zn(STDC)(phen)].solv (solv = DMSO, 4a; DMF, 4b), where py = pyridine, bipy = 2,2'-bipyridine, biql = 2,2'-biquinoline, phen = 1,10-phenathroline. X-Ray analyses revealed that all the compounds consist of infinite 1D zigzag polymer chains. Investigations based on intermolecular interactions illustrate that the chelate terminal ligands play a critical role in determining the packing/entangling modes of the chains and the porosity of the final three-dimensional architectures. In compounds 1 and 2, the weak hydrogen bonding and/or pi-pi stacking interactions assemble the parallel chains into diamond nets with four- and two-fold interpenetration, respectively. In compound 3, the hydrogen bonding and pi-pi stacking interactions collaborate to arrange the chains in two different directions, generating a 3D supramolecular architecture with high catenation. The most interesting packing occurs in 4. Extensive pi-pi stacking interactions involving the terminal and bridging ligands arrange the chains in four different directions, and the chains are hierarchically entangled to produce an unprecedented 3D microporous framework with high stability. Based on comparative investigations, the effects of the terminal and bridging ligands on the packing of zigzag chains have been discussed. The reversible guest inclusion properties of 2 and 4 have also been demonstrated.  相似文献   

10.
摘要 在水和甲醇混合溶液中合成了3个配合物[Zn(DNBC)2(Im)2](1), [Cu(DNBC)2(Im)(H2O)](2) [Co1.5(DNBC)4(Im)(CH3OH)(H2O)2](3) (DNBC = 3,5-二硝基苯甲酸, Im = 咪唑), 并进行了常规表征,单晶X-射线衍射测定了3个配合物的晶体结构。结果表明,配合物1采用四配位,且形成扭曲的四面体形式,通过分子间氢键及范德华力形成了三维网状的超分子框架结构。配合物2中金属铜原子采用五配位,分别与四个氧原子和一个咪唑氮原子配位,形成一个扭曲的四方锥体,而且通过羧基和硝基与金属铜连接形成一个一维Z字链的超分子链状结构。配合物3的空间群为p2(1)/n, a = 1.20876(7)nm, b = 2.63287(16)nm, c = 1.36466(9)nm, V = 4.3045(5)nm3, Z = 4, F(000) = 2166, Co…Co原子之间的距离为0.3587nm。在配合物3中,由八面体配位的Co(II)离子与μ-OH2组成的三核金属钴通过氢键与相邻的三核金属钴连接,Co(II)离子与μ-OH2形成一维Z字链,并且配合物的空腔中包含未配位的咪唑和甲醇分子。配合物3的磁学性质测试表明,三核金属Co(II)之间存在着很好的反铁磁交换作用。  相似文献   

11.
The vibrational behavior of the uncoupled nu(OD) modes and of the water librations in dittmarite-type compounds M'M'PO4.H2O (M'=K+, NH4+; M'=Mn2+, Co2+, Ni2+) is analyzed in terms of the influence of two types of metal-water interactions (M+-H2O and M2+-H2O), the hydrogen bonding and the repulsion potential of the lattices. The M+-H2O interaction is found to be the main factor, which influences nuOD. The strong K+-H2O interaction weakens in a higher degree the intramolecular O-H bonds than the corresponding M2+-H2O interactions (M2+=Mn, Co, Ni). As a result nuOD is shifted to lower wavenumbers in the potassium series than in ammonium one, irrespective of the synergetic effect of M2+, the hydrogen bond lengths and the repulsion potential of the lattices. The analysis of the spectroscopic data evidences for the dominating influence of the M2+-H2O interaction on the wagging mode. The blue shift of nuwag strictly follows the increasing synergetic effect of M2+, i.e. nuM'/Mn相似文献   

12.
Three multinuclear complexes, [Co(L)(OAc)Co(CH3CH2OH)2]·H2O, [Zn(L)(OAc)Zn(CH3OH)], and [{Cd(L)(OAc)Cd(CH3OH)}2], containing a single-armed salamo-type bisoxime H3L have been synthesized and characterized structurally. The Co(II) complex forms a dimeric unit by intermolecular hydrogen bond interactions of neighboring dimeric molecules. The Zn(II) complex also forms a dimeric unit by intermolecular hydrogen bond interactions. Interesting features of the crystal structure include O?O short contacts. Meanwhile, self-assembling infinite 1-D, 2-D, and 3-D supramolecular structures are formed by intermolecular hydrogen bond and C–H?π interactions. The Cd(II) complex forms an infinite 2-D supramolecular structure by intermolecular hydrogen bond interactions. The photophysical properties of the Co(II), Zn(II), and Cd(II) complexes have also been discussed.  相似文献   

13.
Six pentafluorophenylplatinum(II) complexes containing proton acceptor atoms (F) and pyridine-like aromatic ligands able to act as proton donors have been synthesized and characterized, with emphasis on the factors that mediate their supramolecular aggregation in the solid state--hydrogen bonds and pi-pi interactions. The crystal structure analyses of the mononuclear complexes cis-[Pt(C6F5)2(napy)](1), cis-[Pt(C6F5)2(CH2napy)](3), cis-[Pt(C6F5)2(2-ammpy)](5), and cis-[Pt(C6F5)2(2-bipym)](6) reveal the influence of D-HPt and D-HF (D=C, N) hydrogen bonding on the organization of molecules into stacks, which can be further interconnected to generate channels. The prevalence of hydrogen bonding over pi-pi interactions between aromatic rings in establishing the nature of the observed supramolecular aggregation is demonstrated.  相似文献   

14.
Wang X  Guo Y  Li Y  Wang E  Hu C  Hu N 《Inorganic chemistry》2003,42(13):4135-4140
The spherical Lindquist type polyoxometalate, Mo(6)O(19)(2)(-), has been used as a noncoordinating anionic template for the construction of novel three-dimensional lanthanide-aromatic monocarboxylate dimer supramolecular networks [Ln(2)(DNBA)(4)(DMF)(8)][Mo(6)O(19)] (Ln = La 1, Ce 2, and Eu 3, DNBA = 3,5-dinitrobenzoate, DMF = dimethylformamide). The title compounds are characterized by elemental analyses, IR, and single-crystal X-ray diffractions. X-ray diffraction experiments reveal that two Ln(III) ions are bridged by four 3,5-dinitrobenzoate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln(2)(DNBA)(4)(DMF)(8)](2+); [Ln(2)(DNBA)(4)(DMF)(8)](2+) groups are joined together by pi-pi stacking interactions between the aromatic groups to form a two-dimensional grid-like network; the 2-D supramolecular layers are further extended into 3-D supramolecular networks with 1-D box-like channels by hydrogen-bonding interactions, in which hexamolybdate polyanions reside. The compounds represent the first examples of 3-D carboxylate-bridged lanthanide dimer supramolecular "host" networks formed by pi-pi stacking and hydrogen-bonding interactions encapsulating noncoordinating "guest" polyoxoanion species. The fluorescent activity of compound 3 is reported.  相似文献   

15.
Bi J  Kong L  Huang Z  Liu J 《Inorganic chemistry》2008,47(11):4564-4569
Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.  相似文献   

16.
Coordination compounds with a 4,4'-azobis(pyridine) (azpy) ligand, {[M2(azpy)6(H2O)5] x 4PF6 x azpy x H2O}n (M = Ni(II) (1) or Co(II) (2)) (0-dimensional (0-D) dimer), {[Zn(azpy)3(H2O)2] x 2PF6 x 2azpy x 4H2O}n (3) (1-dimensional (1-D) fishbone-type chain), {[Ag(azpy)] x PF6}n (4) (1-D linear chain), {[Mn(NCS)2(azpy)2] x azpy}n (5) (2-dimensional (2-D) grid sheet), and {[Ni(NCS)2(azpy)2] x 3toluene}n (6) (2-D grid sheet), were synthesized and structurally characterized. Compounds 1 and 2 have a 0-D dimer motif, in which one M(II) (M(II) = Ni(II) or Co(II)) coordination site is shared by unidentate azpy and H2O ligands, each with half-occupancy, i.e., exhibiting static disorder. Compounds 3 and 4 afford 1-D fishbone-type and 1-D linear chain motifs, respectively. Azpy mediates pi-pi and pi-p interactions between these low-dimensional structures. Compounds 5 and 6 possess a 2-D grid sheet motif. These sheets assemble to form microporous frameworks that incorporate aromatic guests, such as coordination-free azpy (5) and toluene (6). There exist not only pi-pi and pi-p interactions but also CH-pi interactions between the framework azpy ligands and guests. It should be noted that the azpy ligand is a good candidate for the construction of new assembling systems of coordination compounds through its aromatic interactions.  相似文献   

17.
Solvothermal reactions of Co(II), Ni(II), Zn(II) salts with 2,2'-dinitrobiphenyl-4,4'-dicarboxylate (dnpdc) and 2,2'-bipyridyl-like chelating ligands yielded five compounds formulated as [Co(dnpdc)(bipy)](n)·nH(2)O (1), [M(dnpdc)(phen)](n) (2, M = Co; 3, M = Ni; 4, M = Zn) and [Co(dnpdc)(biql)](n)·2nH(2)O (5) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline and biql = 2,2'-biquinoline). With bipy or phen as coligands, compounds 1-4 exhibit isomorphous 3D M(dnpdc) metal-organic frameworks in which double carboxylate bridged chains are interlinked by the backbones of the dicarboxylate ligands. The bipy or phen ligands are involved in interchain hydrogen bonding or π-π interactions to form 1D zipper-like arrays in the rhombic channels of the frameworks, playing a templating role and determining the channel dimensions. The biql coligand is too bulky for the 1D double carboxylate bridged chain and the rhombic channel. Instead, in compound 5, the dnpdc ligands link metal ions into 1D zigzag metal-organic chains and the biql ligands are arranged into 2D (6,3) arrays through extensive π-π stacking interactions. In compounds 1-3, the double carboxylate bridges in the nonplanar syn-skew conformation mediate ferromagnetic interactions along the chains, while the chelating ligands provide supramolecular pathways for interchain antiferromagnetic interactions. The π-π interactions in 5 also evoke weak antiferromagnetic interactions.  相似文献   

18.
The reaction of 4, 7-phenanthroline (1) with aqueous transitionmetal complexes [Mn(H2O)6][NO3]2, [Co(H2O)6][NO3]2, [Ni(H2O)6[NO3]2, [Mn(H2O)6][ClO4]2, and [Co(H2O)6][ClO4]2 does not produce coordination complexes between these metal cations and the N-donor ligand as expected. Instead, supramolecular hydrogenbonded networks are formed between the nitrogen donor atoms of 4, 7-phenanthroline and the OH groups of coordinated water molecules: M-O-H...N interactions. This motif of second-sphere coordination for 1 can be exploited as a tool for crystal engineering. As a demonstration of the generality of this new interaction as a supramolecular building block, five X-ray crystal structures are reported that utilise this hydrogen bonding scheme; [Co(H2O)4(NO3)2].(1)2 (2a), [Co(MeCN)2(H2O)4][ClO4]2.(1)2 (2b), [Ni(H2O)4(NO3)2].(1)2 (3a), [Mn(H2O)4(NO3)2].(1)2 (4a), and [Mn(H2O)6][ClO4]2.(1)(4).4H2O (4b). Each network involves complete saturation of the hydrogen-bond donor sets between the aqua complex and 1 using primarily M-O-H...N(1) and M-O-H...O(anion), interactions. Thermogravimteric analysis shows these materials to have stabililities similar to coordination polymers involving metal-ligand bonds; this demonstrates that second-sphere hydrogen bonding has potential for the construction of polymeric metal-containing materials.  相似文献   

19.
Ni(II) complexes of N,N'-di(pyrazin-2-yl)pyridine-2,6-diamine (H2dpzpda) with different anions were synthesized and their structures were determined by X-ray diffraction. Hydrogen bonds between the amino groups and anions assembled the mononuclear molecules into different architectures. The perchlorate complex had a 1-D chain structure, whereas switching the anion from perchlorate to nitrate resulted in a corresponding change of the supramolecular structure from 1-D to 3-D. When the nitrate complex packed with the co-crystallized water, a double chain structure was formed through hydrogen bonding. The magnetic studies revealed values of g = 2.14 and D = 3.11 cm(-1) for [Ni(H2dpzpda)2](ClO4)2 (1) and g = 2.18 and D = 2.19 cm(-1) for [Ni(H2dpzpda)2](NO3)2 (2), respectively.  相似文献   

20.
Attempts to prepare heterobimetallic complexes in which 3d and uranium magnetic ions are associated by means of the Schiff bases H(2)L(i) derived from 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehyde were unsuccessful because of ligand transfer reactions between [ML(i)] (M=Co, Ni, Cu) and UCl(4) that led to the mononuclear Schiff base complexes of uranium [UL(i)Cl(2)]. The crystal structure of [UL(3)Cl(2)(py)(2)] [L(3)=N,N'-bis(3-methoxysalicylidene)-ethylenediamine; py=pyridine] was determined. The hexadentate Schiff base ligand N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine (L) was useful for the synthesis of novel trinuclear complexes of the general formula [[ML(py)](2)U] (M=Co, Ni, Zn) or [[CuL(py)]M'[CuL]] (M'=U, Th, Zr) by reaction of [M(H(2)L)] with [M'(acac)(4)] (acac=MeCOCHCOMe). The crystal structures of the Co(2)U, Ni(2)U, Zn(2)U, Cu(2)U, and Cu(2)Th complexes show that the two ML fragments are orthogonal, being linked to the central actinide ion by the two pairs of oxygen atoms of the Schiff base ligand. In each compound, the UO(8) core exhibits the same dodecahedral geometry, and the three metals are linear. The magnetic study indicated that the two Cu(2+) ions are not coupled in the Cu(2)Zr and Cu(2)Th compounds. The magnetic behavior of the Co(2)U, Ni(2)U, and Cu(2)U complexes was compared with that of the Zn(2)U derivative, in which the paramagnetic 3d ion was replaced with the diamagnetic Zn(2+) ion. A weak antiferromagnetic coupling was observed between the Ni(2+) and the U(4+) ions, while a ferromagnetic interaction was revealed between the Cu(2+) and U(4+) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号