首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The application of organic thin-film transistors (OTFTs) to chemical and biological sensing is reviewed. This review covers transistors that are based on the modulation of current through thin organic semiconducting films, and includes both field-effect and electrochemical transistors. The advantages of using OTFTs as sensors (including high sensitivity and selectivity) are described, and results are presented for sensing analytes in both gaseous and aqueous environments. The primary emphasis is on the major developments in the field of OTFT sensing over the last 5–10 years, but some earlier work is discussed briefly to provide a foundation.  相似文献   

2.
Balanced carrier transport is observed in acceptor-acceptor (A-A′) type polymer for ambipolar organic thin-film transistors B (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and IIG) into a polymer main chain to form A-A′ polymer PIIG-BTz could lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and facilitate good molecular stacking of the polymer. Ambipolar transistor behaviour for PIIG-BTz, with the balanced hole and electron mobilities of 0.030 and 0.022 cm2 V-1 s-1 was observed in OTFT devices, respectively. The study in this work reveals that the utilization of acceptor-acceptor (A-A′) structure in polymer main chain can be a feasible strategy to develop ambipolar polymer semiconductors.  相似文献   

3.
High performance thin-film transistors were fabricated using a new precursor of pentacene through a multiple spin-heat procedure. High quality pentacene thin films can be prepared by this method and hence a FET device can be made in a top-contact configuration. The device exhibited a remarkable field-effect mobility of 0.38 cm(2) V(-1) s(-1) with an on/off ratio of 10(6).  相似文献   

4.
Conjugated polymers have been widely studied as potential semiconductor materials for organic thin-film transistors (TFTs). However, they have provided functionally poor transistor properties when the TFTs are fabricated in air. We have developed a class of liquid crystalline regioregular polythiophenes, PQTs, that possess sufficient air stability to enable achievement of excellent TFT properties under ambient conditions. These polythiophenes exhibit unique self-assembly ability and form highly structured thin films when deposited from solution under appropriate conditions. TFTs fabricated in air with PQT channel layers have provided high field-effect mobility to 0.14 cm2 V-1 s-1 and high current modulation to over 107, together with other desirable transistor properties. These high-performance polythiophenes will therefore help bring the long-standing concept of low-cost organic/polymer transistor circuits closer to commercial reality.  相似文献   

5.
Printed organic thin-film transistors (OTFTs) have received great interests as potentially low-cost alternative to silicon technology for application in large-area, flexible, and ultra-low-cost electronics. One of the critical materials for TFTs is semiconductor, which has a dominant impact on the transistor properties. We review here the structural studies and design of thiophene-based polymer semiconductors with respect to solution processability, ambient stability, molecular self-organization, and field-effect transistor properties for OTFT applications. We show that through judicial monomer design, delicately controlled pi-conjugation, and strategically positioned pendant side-chain distribution, novel solution-processable thiophene polymer semiconductors with excellent self-organization ability to form extended lamellar pi-stacking orders can be developed. OTFTs using semiconductors of this nature processed in ambient conditions have provided excellent field-effect transistor properties.  相似文献   

6.
对近几年来高迁移率有机薄膜晶体管材料研究的主要发展作了简要介绍和评述,讨论了高迁移率有机半导体材料存在的问题和发展方向.  相似文献   

7.
Oleic acid-stabilized silver nanoparticles prepared by a facile synthesis afforded highly conductive elements upon proper annealing. Regioregular polythiophene-based thin-film transistors (OTFTs) using source/drain electrodes prepared from these silver nanoparticles provided excellent field-effect characteristics, despite a significant difference between the work function of silver and the HOMO of polythiophene semiconductor. This was attributable to conductive doping of the semiconductor interface by residual oleic acid or its thermally transformed derivative from the silver electrodes, thus enabling ohmic contact formation. This is in sharp contrast to the OTFTs with silver electrodes fabricated from both vacuum deposition and oleylamine-stabilized silver nanoparticles, which exhibited markedly lower mobility and current on/off ratio, a consequence of energetic mismatch of the electrode/semiconductor pairs.  相似文献   

8.
This paper reports a new donor-acceptor copolymer semiconductor, PTBTh, comprising bithiophene and bithiazole where the regular coplanar structure and the intramolecular charge transfer are expected to increase the opportunity for --- stacking and charge transport. The AFM image shows lamellar stacking of the polymer on the surface. The field-effect transistor (FET) properties of PTBTh have been evaluated by a bottom-contact/bottom-gate TFT configuration. The device showed a high hole mobility of 1.14×10-2 cm2 V-1 s-1 and a current on/off ratio of 3×105 with the polymer thin film annealed at a mild temperature of 120 ℃ when measured under ambient conditions.  相似文献   

9.
The synthesis and physicochemical properties of a new class of thiophene/arenesilole-containing pi-conjugated polymers are reported. Examples of this new polymer class include the following: poly(2,5-bis(3',3' '-dihexylsilylene-2',2' '-bithieno)thiophene) (TS6T1), poly(2,5'-bis(3' ',3' '-dihexylsilylene-2' ',2' '-bithieno)bithiophene) (TS6T2), poly(2,5'-bis(2' ',2' '-dioctylsilylene-1' ',1' '-biphenyl)thiophene) (BS8T1), and poly(2,5'-bis(2' ',2' '-dioctylsilylene-1' ',1' '-biphenyl)bithiophene) (BS8T2). Organic field-effect transistors (OFETs) with hole carrier mobilities as high as 0.02-0.06 cm2/V s in air, low turn-on voltages, and current on/off ratios >105-106 are fabricated using solution processing techniques with the above polymers as the active channel layer. OFETs based on this polymer class exhibit excellent ambient operational stability.  相似文献   

10.
We demonstrate that modifying pentacene to incorporate an acid-labile moiety into its molecular structure leads to a new precursor that can be easily deposited, photopatterned, and processed via wet-chemical methods to produce organic semiconducting devices exhibiting good electrical characteristics. Acidic conditions produced by ultraviolet illumination of a co-deposited photoacid generator greatly accelerate the local conversion of this N-sulfinyl-tert-butylcarbamate pentacene adduct back to pentacene. Photopatterned thin-film transistors exhibit carrier mobilities in excess of 0.1 cm2 V-1 s-1, making this an attractive precursor for fabrication of large-area organic electronics via solution-phase methods.  相似文献   

11.
Layer-by-layer assembly is presented as a deposition technique for the incorporation of ultrathin gate dielectric layers into thin-film transistors utilizing a highly doped organic active layer. This deposition technique enables the fabrication of device structures with a controllable gate dielectric thickness. In particular, devices with a dielectric layer comprised of poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) bilayer films were fabricated to examine the properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the transistor active layer. The transistor Ion/off ratio and switching speed are shown to be controlled by the gate bias, which is dependent upon the voltage applied and the number of bilayers deposited for the gate dielectric. The devices operate in the depletion mode as a result of dedoping of the active layer with the application of a positive gate bias. The depletion and recovery rate are highly dependent on the level of hydration in the film and the environment under which the device is operated. These observations are consistent with an electrochemical dedoping of the conducting polymer during operation.  相似文献   

12.
A new type of soluble pentacene precursor is synthesized, which extrudes a unit of CO upon heating at 150 degrees C, to produce pentacene in nearly quantitative yield.  相似文献   

13.
The blend films of small-molecule semiconductors with insulating polymers exhibit not only excellent solution processability but also superior performance characteristics in organic thin-film transistors (OTFTs) over those of neat small-molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT) with small amounts of impurity formed by weak UV exposure. OTFTs with neat impure TESADT had drastically reduced field-effect mobility (<10(-5) cm(2)/(V s)), and a disappearance of the high-temperature crystal phase was observed for neat impure TESADT. However, the mobility of the blend films of the UV-exposed TESADT with poly(α-methylstyrene) (PαMS) is recovered to that of a fresh TESADT-PαMS blend (0.040 cm(2)/(V s)), and the phase transition characteristics partly return to those of fresh TESADT films. These results are corroborated by OTFT results on "aged" TIPS-pentacene. These observations, coupled with the results of neutron reflectivity study, indicate that the formation of a vertically phase-separated layer of crystalline small-molecule semiconductors allows the impurity species to remain preferentially in the adjacent polymer-rich layer. Such a "zone-refinement effect" in blend semiconductors effectively removes the impurity species that are detrimental to organic electronic devices from the critical charge-transporting interface region.  相似文献   

14.
Fabrication of high-performance organic thin film transistors (OTFTs) with solution processed organic charge transfer complex (TTF-TCNQ) film as bottom contact source-drain electrodes is reported. A novel capillary based method was used to deposit the source-drain electrodes from solution and to create the channel between the electrodes. Both p- and n-type OTFTs have been fabricated with solution deposited organic charge transfer film as contact electrodes. Comparison of the device performances between OTFTs with TTF-TCNQ as source-drain electrodes and those with Au electrodes (both top and bottom contact) indicate that better results have been obtained in organic complex film contacted OTFT. The high mobility, low threshold voltage, and efficient carrier injection in both types of OTFTs implies the potential use of the TTF-TCNQ based complex material as low-cost contact electrodes. The lower work function of the TTF-TCNQ electrode and better contact of the complex film with the organic thin film owing to the organic-organic interface results in efficient charge transfer into the semiconductor yielding high device performance. The present method having organic metal as contact materials promises great potential for the fabrication of all-organics and plastic electronics devices with high throughput and low-cost processing.  相似文献   

15.
耿延候 《高分子科学》2017,35(4):480-489
Three acceptor-donor-acceptor(A-D-A) conjugated oligomers, i.e., O1, O2 and O3, have been synthesized using diketopyrrolopyrrole(DPP) as an electron-acceptor unit, and naphtho[1,2-b:5,6-b']dithiophene(NDT), anthra[1,2-b:5,6-b']dithiophene(ADT) or dithieno[3,2-b:3',2'-b']naphtho[1,2-b:5,6-b']dithiophene(DTNDT) as electron-donor unit. These oligomers exhibit identical highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) energy levels, which were ca.-5.1 and-3.3 eV, respectively. Upon thermal annealing, all three oligomers formed thin films with ordered microstructures, and their organic thin film transistors(OTFTs) exhibited p-type transport behavior. The mobility was increased with an extension of the size of D-units. O3 showed the best OTFT performance with the mobility of up to 0.20 cm~2·V~(-1)·s~(-1). The film quality of O3 was improved by adding 1 wt% poly(methylmethacrylate)(PMMA). In consequence, the mobility of the O3-based devices was further enhanced to 0.30 cm~2·V~(-1)·s~(-1).  相似文献   

16.
The development of new organic semiconductors with improved electrical performance and enhanced environmental stability is the focus of considerable research activity. This communication presents the design, synthesis, and device stability data for novel bis-5'-alkylthiophen-2'yl-2,6-anthracene organic semiconductors. When incorporated into thin-film field-effect transistors, mobilities as high as 0.5 cm2/Vs and on/off current ratios greater than 107 are observed. We have investigated device stability in terms of both shelf life and operating lifetime. Devices incorporating the reported semiconductors display an average field-effect mobility of 0.4 cm2/Vs for DHTAnt and an on/off current ratio of 106 even after 15 months of storage. Furthermore, there is no decrease in performance during continuous operation of the devices over several thousand cycles.  相似文献   

17.
We present here the systematic synthesis and comparative physicochemical characterization of a series of regiochemically varied and core size extension-modulated arene(perfluoroarene)-thiophene oligomers. The molecules investigated are: 5,5'-diphenyl-2,2':5',2':5',2'-quaterthiophene (1), 5,5'-bis[1-[4-(thien-2-yl)phenyl]]-2,2'-dithiophene (2), 4,4'-bis[5-(2,2'-dithiophenyl)]-biphenyl (3), 5,5'-diperfluorophenyl-2,2':5',2':5',2'-quaterthiophene (4), 5,5'-bis[1-[4-(thien-2-yl)perfluorophenyl]]-2,2'-dithiophene (5), 4,4'-bis[5-(2,2'-dithiophenyl)]-perfluorobiphenyl (6), 5,5'-diperfluorophenyl-2,2':5',2'-tertthiophene (7), 5,5'-diperfluorophenyl-2,2'-dihiophene (8), and 5,5-diperfluorophenylthiophene (9). Trends in optical absorption and emission parameters, molecular structures as defined by single-crystal X-ray diffraction, as well as electrochemical redox processes are described. The morphologies and microstructures of the vapor-deposited films grown over a range of growth temperatures have also been characterized. Field-effect transistor (FET) measurements demonstrate that all of these materials are FET-active and, depending on the molecular architecture, exhibit comparably good p- or n-type mobility when optimum film microstructural order is achieved. A very large n-channel mobility of approximately 0.5 cm2/Vs with I(on)/I(off) ratios > 10(8) is achieved for films of 4.  相似文献   

18.
As an emerging donor building block, naphthodithiophene (NDT) is causing more concerns in the field of organic semiconductors. With the rigid and coplanar molecule structure, NDT will exhibit more application space relying on its own advantage for facilitating the charge carrier transport. In this review article, we have summarized the development progress on the NDT-based donor materials for solution processed organic solar cells. Discussions and comments on those representative NDT type materials about structure and property are also presented.  相似文献   

19.
Organic thin-film transistor (OTFT) performance depends on the chemical characteristics of the interface between functional semiconductor/dielectric/conductor materials. Here we report for the first time that OTFT response in top-gate architectures strongly depends on the substrate chemical functionalization. Depending on the nature of the substrate surface, dramatic variations and opposite trends of the TFT threshold voltage (~±50 V) and OFF current (10(5)×!) are observed for both p- and n-channel semiconductors. However, the field-effect mobility varies only marginally (~2×). Our results demonstrate that the substrate is not a mere passive mechanical support.  相似文献   

20.
A novel solution-processed, compositionally and structurally stable dual-layer gate dielectric composed of a UV-cured poly(4-vinyl phenol)-co-poly(methyl methacrylate) bottom layer and a thermally cross-linked poly(methyl silsesquioxane) top layer for organic thin-film transistors is described. This gate dielectric design, coupled with compatible solution-processable semiconductor and conductor materials, has enabled fabrication of all solution-processed, high-performance organic thin-film transistors on flexible substrates. High field-effect mobility and current on/off ratio, together with other desirable transistor properties, are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号