首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We herein report three new coordination polymers generated from Cu(II) carboxylates (mal, 2ac, fum) and conformationally flexible bifunctional IX as building blocks. All the three complexes adopt unique structures in the solid state. The complex [Cu2(mal)2(IX)2(H2O)6]n crystallizes as orthorhombic co-linear rods with space group P2(1) P2(1) P2(1). Each rod is further formed of two tightly intertwined strings. The second polymer [Cu2(ac)4(IX)2]n crystallizes with space group P1 which consists of two sets of intersecting 2D sheets composed of parallel rods which interpenetrate to form a fully interlocked 3D structure. In both these complexes IX coordinates in the anti mode. The third polymer [Cu2(fum)2(IX)2(H2O)2]n possesses a monoclinic crystal system with space group C2/c and crystallizes as 1D straps. Cu–fum–Cu forms the base of the string which is alternatively garlanded by a macrocycle derived from Cu2(IX)2 unit, where IX coordinates in the syn fashion. The present study suggests that the use of a rigid building block with a flexible organic ligand leads to a better prediction of the final structure of the polymeric array.  相似文献   

2.
Synthesis of (–)-(1R,2S)-Norephedrine Homologues The amino function of esters of some simple natural amino acids I is blocked in the form of a cyanoenamine by means of 2-oxocyclopentanecarbonitrile, so that the corresponding cyanoenamino esters II are obtained. The reaction of a disubstituted lithium amide with II leeds to the cyanoenamino-amides VI . The amide function present in VI is then transformed into an aromatic ketone by means of phenyllithium, to give the (benzoylalkyl)aminocyclopentenecarbonitriles VII . Reduction of Compounds VII with NaBH4 in EtOH ?80° affects only the keto function and leads to the [(α-hydroxybenzyl)alkyl]amino-cyclopentenecarbonitriles VIII . The amino function is then deprotected by acid hydrolysis to give the amino-alcohols IX with yields close to 50%; in every amino-alcohol IX , the erythro isomer, homologous to natural (–)-(1R,2S)-norephedrine is the more abundant or the single product. All the polyfunctional compounds prepared conserve optical activity; it has been demonstrated that the amino-alcohols IX are pure enantiomers and that no racemisation lakes place at any step of their synthesis.  相似文献   

3.
Thermolysis of Phosphorus(V) Sulfur(VI) Nitride Halides Thermolysis of compounds of the type R2PCl = N–SO2X (R = Cl, CH3, C6H5; X = F, Cl) results in the formation of the compounds R2P(O)Cl and [NS(O)X]n. Pyrolysis of the title compounds with longer chains yields, among others, the cyclic compounds III and IX. IX is also one of the decomposition products of a sulfamide derivative (XXI). Finally the thermal behaviour of carbon containing phosphorus(V) sulfur(VI) nitride chlorides has been investigated.  相似文献   

4.
In Order to test in vivo cytotoxicity of diorganotin(IV)-amoxicillin (amox) derivatives, mitotic chromosomes of Rutilus rubilio (Pisces, Cyprinidae) have been analyzed using two different chromosome-staining techniques. Results gathered after exposure of fish to the free amox · 3H2O, R2SnClamox · 2H2O, and R2Snamox · 2 2H2O (R = methyl, butyl and phenyl; amox = 6-[D(−)-β-amino-p-hydroxyphenylacetamido]penicillinate) suggest that methyl derivatives seem to exert a lower cytotoxicity than butyl and phenyl ones and that R2Snamox · 2 2H2O deriva-tives are more toxic than R2SnClamox · 2H2O at both 10−5 and 10−7mol dm−3 concentrations. The following structural lesions have been iden-tified by comparative analysis of mitotic chromo-somes from untreated specimens (controls) and specimens treated with diorganotin(IV)-amoxicillin derivatives: (1) differentially stained chromosome areas; (2) granular deeply stained zones along the chromosomal body; (3) arm breakages; and (4) side-arm bridges (pseudochiasmata).  相似文献   

5.
The synthesis of bis-(p-methoxyphenyl)-ketene (IX) and of bis-(p-nitrophenyl)-ketene (VI) from the corresponding aril-monohydrazones is described. Whereas IX could be isolated in pure crystalline form, VI had to be prepared as a solution. Addition of methanol to diphenylketene (III) proceeds 1.6 times faster than to dianisylketene (IX). Bis-(p-nitrophenyl)-ketene (VI) is considerably more reactive towards water than either III or IX; a quantitative determination of its relative reactivity was not possible. Dianisylketene reacts approximately 15 times faster with molecular oxygen and yields 4 times more of the corresponding diarylketone and carbon dioxide than do the ketenes III and VI. It is shown with 18O2 that molecular oxygen is indeed involved in the oxidation of dianisylketene to dimethoxybenzophenone and carbon dioxide.  相似文献   

6.
New complexes having the formulae [L2CoX2] and [LCuCl2], [LCuCl] and [LCu](ClO4)2 where L?=?(2-thiophene)-(5,6-diphenyl-[1,2,4]-triazin-3-yl)hydrazone TDPTH; X?=?Cl, OAc or ClO4 have been synthesized and characterized on the basis of elemental analyses, conductance, magnetic moments and infrared, electronic and ESR spectral data. The IR spectra indicate that TDPTH is a neutral bidentate ligand, coordinating via a triazine-N and azomethine-N in [L2CoX2] and [LCuCl2] with the thiophene-S not coordinated but is tridentate in [LCuCl] and [LCu](ClO4)2 through the same two nitrogen atoms and thiophene-S. The magnetic moment and electronic spectral data suggest a distorted octahedral structure for Co(II) complexes, a dimeric square pyramidal geometry for [LCuCl2] through chloride bridges and a dimeric diamagnetic, four-coordinate copper in [LCu](ClO4)2 through thiophene-S bridges. The X-band ESR spectra of Co(II) complexes, in the solid state, are rhombic with three g values consistent with a high-spin distorted octahedral structure. The X-band ESR spectrum of the powdered sample of both [LCuCl2]·2H2O and [LCu](ClO4)2 at room temperature and at 77?K showed only one broad signal due to?ΔM s?=?±?1 transition and a weak signal due to the forbidden?ΔM s?=?±?2 transition, indicating an antiferromagnetic interaction between copper(II) centers whereas [LCuCl] is ESR silent, indicating a monovalent copper ion in this complex.  相似文献   

7.
In order to obtain a continuous source of mitotic metaphases, gill tissue of Aphaius fasciatus (Pisces, Cyprinodontiformes) has been successfully employed. Results gathered after exposure of fish to R2SnClpenG, R3SnClpenGNa, to the parents R2SnCl2, R3SnCl and to penGNa (penGNa = penicillinGNa; R = methyl, butyl and phenyl) suggest that both the parent organotin (IV) chloride and organotin (IV) chloropenG derivatives are toxic while penGNa exerts no significant toxic activity. Essentially, all of the chromosome abnormalities are classifiable as irregularly staining of chromosomes, breakages, side-arm bridges or pseudochiasmata.  相似文献   

8.
The configurations of biliverdin-IXγ and -IXδ dimethyl esters 1 and 2 in solutions, have been studied using Nuclear-Overhauser-Effect (NOE) experiments. Irradiation (500-700 nm) of biliverdin IXδ gave syn-Z → anti-E isomerization of the central methine bridge and in aerated polar solutions, four new cyclized pigments were isolated for which structures 3, 4, 5 and 6 are proposed. Neobiliverdin IXδ 3 is also formed in degassed solution (Φ=4.10?5) but pigments 4, 5 and 6 arise from photo-oxidation with O2. Biliverdin IXδ appears to be a good model for the study of photo-reactions occurring on the vinyl groups of the natural biliverdin IXγ (pterobilin).  相似文献   

9.
A series of complexes (bpy)2LRu(II) and (Ph2bpy)2LRu(II), where bpy is 2,2′-bipyridine, Ph2bpy is 4,4′-diphenyl-2,2′-bipyridine and L is 1,10-phenanthroline (phen), [1]benzothieno[2,3-c][1,10]phenanthroline (btp), naphtho[1′,2′?:?5,4]thieno[2,3-c][1,10]phenanthroline [ntpl, l=linear], and naphtho[1′,2′?:?4,5]thieno[2,3-c][1,10]phenanthroline (ntph, h=helical) were synthesized and characterized using 2D COSY NMR spectra. The UV spectra were assigned to study their metal to ligand charge transfer (MLCT) excited states. Complexes of (bpy)2LRu(II) showed identical absorption wavelengths (λ max) for the MLCT of all four members of the series with the only variation being the intensity (log ε ) for each. The MLCT of (Ph2bpy)2LRu(II) showed the similar behavior only with different wavelengths showing that in this heteroleptic series of complexes the MLCT is exclusively to the bpy ligands with none to thienophenanthroline (btp, ntpl, or ntph).  相似文献   

10.
In dirubidium copper bis[vanadyl(V)] bis(phosphate), Rb2Cu(VO2)2(PO4)2, three different oxo complexes form an anionic framework. VO5 polyhedra in a trigonal bipyramidal configuration and PO4 tetrahedra share vertices to form eight‐membered rings, which lie in layers perpendicular to the a axis of the monoclinic unit cell. Cu atoms at centres of symmetry have square‐planar coordination and link these layers along [100] to form a three‐dimensional anionic framework, viz. [Cu(VO2)2(PO4)2]2−. Intersecting channels in the [100], [001] and [011] directions contain Rb+ cations. Topological relations between this new structure type and the crystal structures of A(VO2)(PO4) (A = Ba, Sr or Pb) and BaCrF2LiF4 are discussed.  相似文献   

11.
Immature stages of Ceratitis capitata were tested as a model for hematoporphyrin IX (HP IX) phototoxicity. The lethal concentration 50 (LC50) of HP IX in the food was determined during postembryonic development until adult emergence as 0.173 mm (95% CI: 0.138–0.209). The corresponding HP IX LC50 during the dispersal period alone was 0.536 mm (95% CI: 0.450–0.633). HP IX toxicity was compared against Phloxine B (PhB) (0.5 mm ). HP IX elicited a mortality of 90.87%, which was mainly concentrated during prepupal and early pupal stages. PhB mortality was much lower (56.88%) and occurred mainly during the adult pharate stage. A direct correlation between light-dependent HP IX mortality, evidence of reactive oxygen species (ROS) and lipid peroxidation (conjugated dienes and thiobarbituric acid reactive substances) was established in C. capitata larvae. ROS were found to be very significant in both the brain and in the gut.  相似文献   

12.
Upon exposure to a catalytic amount of [RhCl(CO)2]2 in 1,4‐dioxane, homopropargylallene‐alkynes underwent a novel cycloisomerization accompanied by the migration of the alkyne moiety of the homopropargyl functional group to produce six/five/five tricyclic compounds in good yields. A plausible mechanism was proposed on the basis of an experiment with 13C‐labeled substrate. The resulting tricyclic derivatives were further converted into the corresponding bicyclo[3.3.0] skeletons with vicinal cis dihydroxy groups.  相似文献   

13.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

14.
Fluorine Complexes of Platinum(II): Synthesis, NMR and Vibrational Spectra of Tetrafluoroplatinate(II) and Difluorooxalatoplatinate(II) From the platinum(IV) compounds (n‐Bu4N)2[PtF4(ox)] und cis‐(n‐Bu4N)2[PtF2(ox)2] on exposure to ultraviolet light at —196 °C the new platinum(II) fluorine complexes (n‐Bu4N)2[PtF4] ( 1 ) and (n‐Bu4N)2[PtF2(ox)] ( 2 ) are formed by elimination of a single oxalate ligand. With the synthesis of 1 the series of the tetra halogeno platinates(II) is completed now. With Cs+ and bis‐(triphenylphosphine)iminium(PNP+) as cations tetrafluoroplatinate(II) can be precipitated as pale yellow salts. Under exclusion of air all compounds are stable at —30 °C for several days, but they decompose and become black at room temperature in air within some hours. The infrared spectrum (60 K) of 1 exhibits the antisymmetric PtF stretching vibration at 515 and two deformation vibrations at 255 and 230 cm—1. In the Raman spectrum (293 K) of (PNP)2[PtF4] the symmetric PtF stretching vibrations appear at 595 and 565 cm—1. The calculated valence force constant is fd(PtF) = 3.09 mdyn/Å. The NMR shifts are δ(195Pt) = 6592 ( 1 ) and 5099 ( 2 ) and δ(19F) = —428 ( 1 ) and —393 ppm ( 2 ) with the coupling constants 1J(PtF) = 1747 ( 1 ) and 1385 Hz ( 2 ).  相似文献   

15.
A combined experimental study and density functional theory calculations of fac‐[MnBr (CO)3L] complexes (L = 2‐(2′‐pyridyl)benzimidazole ligand, furnished with either morpholine (Lmorph) or phthalimido (Lphth) side‐chain) were performed using different spectral and analytical tools. The synthesized complexes released carbon monoxide upon the exposure to LED source light at 468 nm. Illumination of fac‐[MnBr (CO)3L] (10 μM) in the myoglobin solution (Mb) produced about 25 μM MbCO. The plateau of the CO release process is attained within 25 min. With the aid of time‐dependent density functional theory calculations, the observed lowest energy absorption transition at ~ 400 nm has a ground‐state composed of d (Mn)/π (pyridyl) and excited‐state of ligand π*‐orbitals forming MLCT/π‐π*. Natural population analyses of fac‐[MnBr (CO)3L] were carried out to get information about the strength of Mn–CO bonds, electronic arrangment and natural charge of manganese ion.  相似文献   

16.
Abstract

Reactions of O-tolyldithiocarbonate ligands, (o-, m-, and p-CH3C6H4O)CS2Na, with anhydrous FeCl2 (1:2 molar ratio) and with FeCl3 (1:1 and 1:3 molar ratio) yielded the complexes [{(CreO)CS2}2Fe] and [{(CreO)CS2}nFeCl3–n] (Cre = o-, m-, and p-CH3C6H4; n = 1 and 3), respectively. These complexes were reacted with nitrogen and phosphorus donor ligands in dichloromethane, which afforded the adducts corresponded to [{(CreO)CS2}2Fe.xL] and [(CreO)CS2FeCl2.xL] {x = 1, L = N2C12H8; x = 2, L = NC5H5, P(C6H5)3}. Elemental analyses and IR, UV-visible, and mass spectroscopic and magnetic studies indicated bidentate mode of bonding by dithiocarbonate ligands leading to sixcoordination around the iron atom as a consequence of Fe…Fe interaction in the complexes [{(CreO)CS2}2Fe] and [(CreO)CS2FeCl2]. The complexes exhibited antifungal activity. The fungicidal activity of the complexes has been tested by poisoned food technique using fungi Fusarium sp.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental resource: Antifungal Activity.  相似文献   

17.
Preparation and Properties of Dibromotetrachloro-u-methylene-diantimonates(III) and Hexabromotetrachloro-u-methylene-diantimonates(V) The complex salts (R4E)2 [Br3Cl2Sb]2 CH2 (R4E = Et4N, Ph4P, Ph4As, Ph4Sb) are obtained by the reaction of [Cl2Sb]2 with R4 EBr in dichloromethane. The oxidation of the new compounds with Br2 at ?78°C, in dichloromethane, leads to the corresponding complex salts of pentavalent antimony (R4E)2[Br3Cl2Sb]2CH2.  相似文献   

18.
The reactions of silver(I) with isocyclam, scorpiand,trans-Me2[14]anN4, cis-Me6[14]anN4,(N-Me)Me2py[14]anN4 and py[12]anN4 were investigated.The stability constant of the Ag(I) complex with py[12]anN4 was determined. The aqueous solutions of the silver(II) complexes with the 14-membered ligands were obtained, and characterized by means of UV-VIS and CVA measurements. The Ag2+ ion does not form a five-coordinate complex with scorpiand. The formal potentials of the Ag(II)/Ag(I) system in the presence of scorpiand, trans-Me2[14]anN4, cis-Me6[14]anN4 and(N-Me)Me2py[14]anN4 were determined. The mechanism is also proposedfor the electroreduction of the silver(II) complexes with these compounds on a platinum electrode in aqueous solution.  相似文献   

19.
Treatment of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid (X) with acetic anhydride under refluxing conditions afforded 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]-pyrimido[4,5-d]pyrimidin-5-one acetate (IX). The intermediate X was prepared from 4-chloro-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (V). The reaction of V with the sodium salt of 2-amino-3-hydroxypyridine at room temperature gave 4-(2-amino-3-pyridyloxy)-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (VI). Treatment of VI with a hot aqueous sodium hydroxide solution and subsequent acidification gave X. Involvement of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecaroboxylic acid ethyl ester (VIII) (Smiles rearrangement product) as an intermediate in the above alkaline hydrolysis reaction of VI to X was demonstrated by the isolation of VIII and its subsequent conversion into X under alkaline hydrolysis conditions. Acetylation of VIII with acetic anhydride in pyridine solution gave 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester acetate (XI), which afforded IX on fusion at 220°. This alternative synthesis of IX from XI supported the structural assignment of IX. Fusion of VI gave 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]pyrimido]4,5-d]pyrimidin-5-one (VII). The latter was also obtained when VIII was fused at 210°. Acetylation of VII with acetic anhydride afforded IX.  相似文献   

20.
New hexamethylated ferrocene derivatives containing thioether moieties (1,1′-bis[(tert-butyl)thio]-2,2′,3,3′,4,4′-hexamethylferrocene ( 3a , b )) or fused S-heteropolycyclic substituents (rac-1-[(1,3-benzodithiol- 2-yliden)methyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 5 ) and rac-1-[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 14 )), as well as a series of ferrocene-substituted vinylogous tetrathiafulvalenes (1,1′-bis[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 6a ), 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 6b ), [1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21a ), [1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21b ), [1,2-bis(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21c ), [1-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)-2-(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21d )) were prepared and fully characterized. Their redox properties show that some of them are easily oxidized and undergo transformation to paramagnetic salts containing bis(maleonitriledithiolato)-metallate(III) anions [M(mnt)2] (M=Ni, Pt; bis[2,3-dimercapto-κS)but-2-enedinitrilato(2)]nickelate (1) or -platinate (1). The derivatives [ 3a ] [Ni(mnt)2] ( 26 ), [ 3a ] [Pt(mnt)2] ( 27 ), [Fe{(η5-C5Me4S)2S}] [Ni(Mnt)2] ( 28 ), [Fe{(η5-C5Me4S)2S}] [Pt(mnt)2] ( 29 ), [ 5 ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 30 ), [ 6a ] [Ni(mnt)2] ( 31 ), [ 6a ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 31a ), [ 6a ] [Pt(mnt)2] [ 32 ), and [ 6b ] [Ni(mnt)2] ( 33 ) were prepared and fully characterized, including by SQUID (superconducting quantum interference device) susceptibility measurements. X-Ray crystal-structural studies of the neutral ferrocene derivatives 6a , b , 21c , d , and 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-oxoethyl]ferrocene ( 23 ), as well as of the charge-transfer salts 26 – 28 , 30 , and 31a , are reported. The salts 28 and 30 display both a D+AAD+ structural motif, however, with a different relative arrangement of the [{Ni(mnt)2}2]2− dimers, thus giving rise to different but strong antiferromagnetic couplings. Salt 26 exhibits isolated ferromagnetically coupled [{Ni(mnt)2}2]2− dimers. Salt 27 displays a D+AD+A structural motif in all three space dimensions, and a week ferromagnetic ordering at low temperature. Salt 31a , on the contrary, shows segregated stacks of cations and anions. The cations are connected with each other in two dimensions, and the anions are separated by a 1,2-dichloroethane molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号