首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The first step in the oxidation of ascorbate with substituted nitrosobenzenes is a proton-coupled electron transfer (PCET) reaction and the observed kinetic isotope effects in the reaction, kH2O/kD2O, change dramatically with a change in solvent polarity, in line with known theoretical predictions.  相似文献   

2.
The proton transfer from carbon to a chloride ion and the proton transfer to a molecule of water promoted by chloride ions in the acid-catalyzed formation of hydroxamic acids from aldehydes and substituted nitrosobenzenes in mixed solvents have been proposed based on experimental and theoretical investigations. The formation of uncommon contact ion pairs consisting of the nitrosocarbinolic cation intermediate and a chloride anion, followed by the proton transfer from a C-H moiety of the cation intermediate, has been proposed. The influence of chloride on the proton transfer to a water molecule of the solvent-separated nitrosocarbinolic-cation–chloride ion pair was investigated too. The insights are based on the obtained kinetic and other evidence with regard to (1) influences of chloride anions on the observed reaction rates and primary kinetic isotope effects (PKIE) in the reaction; (2) the observed variation of the PKIE-s and rates of the reaction when perchlorate anions are present along with the chloride ions; and (3) the consideration of a model of the nitrosocarbinolic-cation-intermediate—chloride ion pair and transition structure for the proposed proton transfers based on the ab initio calculations.  相似文献   

3.
The reaction of imidazole in aqueous solution with toluene-4-sulfonate salts of substituted phenyl N-methylpyridinium-4-carboxylate esters obeys the rate law: k(obs) - k(background) = k2[Im] + k3[Im]2 where [Im] is the imidazole concentration present as free base. The parameters k2 and k3 fit Br?nsted type free energy correlations against the pKa of the leaving phenol with betaLg values of -0.65 and -0.42 respectively. The imidazolysis is insensitive to catalysis by general bases and yet k3 for the 3-cyanophenyl ester possesses a deuterium oxide solvent isotope effect of 4.43 consistent with rate limiting proton transfer. A special catalytic function is proposed for decomposition of the tetrahedral addition intermediate (T+/-) via k3 whereby the catalytic imidazole interacts electrophilically with the leaving phenolate ion and removes a proton from the nitrogen in the rate limiting step with subsequent non-rate limiting ArO-C bond fission. This is consistent with the change in effective charge on the leaving oxygen in the transition structure of k3 which is more positive (-0.42) than that expected (-0.60) for the equilibrium formation of the zwitterion intermediate. The catalytic function at the leaving oxygen is likely to be an electrophilic role of the NH as a hydrogen bond donor. In the k2 step the deuterium oxide solvent isotope effect of 1.51 for the 3-cyanophenyl ester and the betaLg of -0.65 are consistent with rate limiting expulsion of the phenolate ion from the T+/- intermediate. The absence of general base catalysis of imidazolysis rules out the established mechanism for aminolysis of esters where T+/- is stabilised by a standard rate limiting proton transfer. The kinetically equivalent term for k3 where T- reacts with the imidazolium ion as an acid catalyst would require this step to be rate limiting and involve proton transfer not consistent with departure of the good aryl oxide leaving group.  相似文献   

4.
The reaction of a Lewis acidic borane with an alkyne is a key step in a diverse range of main group transformations. Alkyne 1,1‐carboboration, the Wrackmeyer reaction, is an archetypal transformation of this kind. 1,1‐Carboboration has been proposed to proceed through a zwitterionic intermediate. We report the isolation and spectroscopic, structural and computational characterization of the zwitterionic intermediates generated by reaction of B(C6F5)3 with alkynes. The stepwise reactivity of the zwitterion provides new mechanistic insight for 1,1‐carboboration and wider B(C6F5)3 catalysis. Making use of intramolecular stabilization by a ferrocene substituent, we have characterized the zwitterionic intermediate in the solid state and diverted reactivity towards alkyne cyclotrimerization.  相似文献   

5.
The reaction of a Lewis acidic borane with an alkyne is a key step in a diverse range of main group transformations. Alkyne 1,1-carboboration, the Wrackmeyer reaction, is an archetypal transformation of this kind. 1,1-Carboboration has been proposed to proceed through a zwitterionic intermediate. We report the isolation and spectroscopic, structural and computational characterization of the zwitterionic intermediates generated by reaction of B(C6F5)3 with alkynes. The stepwise reactivity of the zwitterion provides new mechanistic insight for 1,1-carboboration and wider B(C6F5)3 catalysis. Making use of intramolecular stabilization by a ferrocene substituent, we have characterized the zwitterionic intermediate in the solid state and diverted reactivity towards alkyne cyclotrimerization.  相似文献   

6.
The plot of rate constants vs. pH for the dehydration step of the reaction between furfural and 5‐nitrofurfural with hydroxylamine, N‐methylhydroxylamine, and O‐methylhydroxylamine, shows two regions corresponding to the oxonium ion‐catalyzed and spontaneous dehydration. The oxonium ion‐catalyzed dehydration region of the reaction of furfural with the above mentioned hydroxylamines exhibits general acid catalysis with excellent Brønsted correlation (Brønsted coefficients: 0.76 (r = 0.986), 0.68 (r = 0.987), and 0.67 (r = 0.993) respectively). However, the rate constants of the spontaneous dehydration of these hydroxylamines, where water is considered the general acid catalyst, exhibit a large positive deviation from the Brønsted line. This fact was not observed in the reaction of non‐hydroxyl amines with different aromatic aldehydes by other authors, thus supporting that the spontaneous dehydration steps for these reactions proceed by intramolecular catalysis. The mechanism of intramolecular catalysis might be stepwise. First, a zwitterionic intermediate is formed. It can then evolve in the second step by loss of water, or follow a concerted pathway, with the transference of a proton through a five‐membered ring (general intramolecular acid catalysis). In the case of non‐hydroxyl amines, data suggested the possibility of a mechanism of intramolecular proton transfer through one or two water molecules, from the nitrogen of the amine to the leaving hydroxide ion. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 685–692, 2002  相似文献   

7.
Reaction rates for the protodesilylation of trimethylphenylsilane and of [2,4,6-2H3]-trimethylphenylsilane by HCIO4, were measured in aqueous methanol (2:5, v/v) and the secondary deuterium isotope effect for the reaction was found to be kH/kD3 = 0.79. The magnitude of the observed isotope effect supports a mechanism in which the rate-determining step is the proton transfer from the hydronium ion to the silane to form a σ-intermediate.  相似文献   

8.
Magtrieve? (CrO2) mediated reactions with benzaldoxime (1a) and its deuterium congener (d-1a) led to the observation of inverse deuterium kinetic isotope effect (i-DKIE) for the substrate’s oxidation (Eq. 1a) as well as deoximation (Eq. 2a) process. Disappearance of the starting material 1a and formation of the products—1,3-dipolar cycloaddition product (4a) as well as benzaldehyde (3a)—followed a typical 1st-order kinetics. The observed kD/kH values, in the range of 2–4, suggest for a strong secondary isotope effect which was further evidenced by the fact that d-labeling was retained in 3a. Therefore, the observed i-SDKIE supports our original hypothesis that aldoxime (with sp2-C) interacts with CrO2 in a rate determining step to form a tetrahedral (now with sp3-C) structure, possibly like 6, which may act as a common intermediate for both the pathways.  相似文献   

9.
Primary and secondary deuterium kinetic isotope effects have been measured for elimination of LCl (L = H or D) from some substituted 1,2-diaryl-1-chloroethanes. Although changes in these effects are in agreement with theoretical predictions, the high values of (EH-ED)β and the significantly low AH/AD may suggest that either proton tunnelling or an internal return mechanism is complicating this E2 elimination.  相似文献   

10.
The largely reversible, light‐induced tautomerization of 2‐nitrotoluene ( 1 ) to the quinonoid aci‐nitro tautomer aci‐ 1 was studied by flash photolysis as a benchmark for comparison with the widely used nitrobenzyl phototriggers (`caged compounds'). The pH‐rate profile for the decay of aci‐ 1 in aqueous solution exhibits downward curvature at pH 3 – 4, which is attributed to pre‐equilibrium ionization of the nitronic acid aci‐ 1 to its anion 1 (pKa=3.57). Two regions of upward curvature, at pH ca. 6 and <0 (H0≈−1), each indicate a change in the reaction mechanism. The elementary reactions that dominate between the curved regions are assigned on the basis of kinetic isotope effects and the observation of general acid catalysis: Hydronium ions regenerate 2‐nitrotoluene by C‐protonation of 1 in the pH range of 0 – 6, and H2O is the proton source at pH>6. A hird, irreversible Nef‐type isomerization of aci‐ 1 prevails in highly acidic solutions (pH<0). The equilibrium constant for the thermal tautomerization of 1 to aci‐ 1 is estimated as pKT=17.0±0.2 based on kinetic data.  相似文献   

11.
An unexpected and previously unknown reaction sequence in the interactions of the acyl halides with nitrosobenzenes, which involves carbon-nitrogen bond formation followed by heterolytic nitrogen-chlorine bond cleavage giving the corresponding unsubstituted N-phenylalkylhydroxamic acids (or N-phenylarylhydroxamic acids) and chlorine as the products has been observed. The kinetic and other evidence obtained suggest that the carbon-nitrogen bond formation is the consequence of a nucleophilic interaction of an N-phenylchlorohydroxylamine intermediate, formed in the first reaction step, with the acyl halide in the second step of the complex sequence, which leads to an N-acyl-N-chlorophenylhydroxylamine cation intermediate. The key reaction step involves the interaction of an N-acyl-N-chlorophenylhydroxylamine cation intermediate with chloride ion, which leads to the N-Cl heterolytic bond cleavage and the final formation of the hydroxamic group and a molecule of chlorine.  相似文献   

12.
A facile and convenient synthesis of the chiral phthalide framework catalyzed by cationic iridium was developed. The method utilized cationic iridium/bisphosphine‐catalyzed asymmetric intramolecular carbonyl hydroacylation of 2‐keto benzaldehydes to furnish the corresponding optically active phthalide products in good to excellent enantioselectivities (up to 98% ee). The mechanistic studies using a deuterium‐labelled substrate suggested that the reaction involved an intramolecular carbonyl insertion mechanism to iridium hydride intermediate. In addition, we investigated the kinetic isotope effect (KIE) of intramolecular hydroacylation with deuterated substrate and determined that the C?H activation step is not included in the turnover‐limiting step.  相似文献   

13.
The neutral hydrolysis of formamide in water is a suitable reference to quantify the efficiency of proteolytic enzymes. However, experimental data for this reaction has only very recently been obtained and the kinetic constant determined experimentally is significantly higher than that predicted by previous theoretical estimations. In this work, we have investigated in detail the possible mechanisms of this reaction. Several solvent models have been considered that represent a considerable improvement on those used in previous studies. Density functional and ab initio calculations have been carried out on a system which explicitly includes the first solvation shell of the formamide molecule. Its interaction with the bulk has been treated with the aid of a dielectric continuum model. Molecular dynamics simulations at the combined density functional/molecular mechanics level have been carried out in parallel to better understand the structure of the reaction intermediates in aqueous solution. Overall, the most favored mechanism predicted by our study involves two reaction steps. In the first step, the carbonyl group of the formamide molecule is hydrated to form a diol intermediate. The corresponding transition structure involves two water molecules. From this intermediate, a water-assisted proton transfer occurs from one of the hydroxy groups to the amino group. This reaction step may lead either to the formation of a new reaction intermediate with a marked zwitterionic character or to dissociation of the system into ammonia and formic acid. The zwitterionic intermediate dissociates quite easily but its lifetime is not negligible and it could play a role in the hydrolysis of substituted amides or peptides. The predicted pseudo-first-order kinetic constant for the rate-limiting step (the first step) of the hydrolysis reaction at 25 degrees C (3.9x10(-10) s(-1)) is in excellent agreement with experimental data (1.1x10(-10) s(-1)).  相似文献   

14.
The cleavage and isomerisation of uridine 3'-alkylphosphates was studied in the presence of a dinuclear Zn(2+) complex, 3. The rate acceleration of the cleavage by 1 mM 3 is approximately 10(6)-fold under neutral conditions. Most remarkably, the complex also promotes the isomerisation of phosphodiester bonds, although the rate-enhancement is more modest: under neutral conditions complex 3 (1 mM) catalyses isomerisation by about 500-fold. The observation of this reaction shows that the reactions of these substrates catalysed by 3 proceed through a stepwise mechanism involving an intermediate phosphorane. A β(lg) value of -0.92 was determined for the 3-promoted cleavage reaction, and modest kinetic solvent deuterium isotope effects ranging from 1.5 to 2.8 were observed. Isomerisation was less sensitive to the nature of the esterifying group, with a β value of -0.5, and the kinetic solvent deuterium isotope effects were less than 1.5. Most of these characteristics of the 3-promoted cleavage are very similar to those for the cleavage of nucleoside 3'-phosphotriesters. These data are explained by a mechanism in which the complex primarily acts as an electrophilic catalyst neutralising the charge on the phosphate and stabilising an intermediate phosphorane, with general acid catalysis promoting the cleavage reaction. In contrast to the behaviour of triesters, isomerisation is significantly slower than cleavage; this suggests that the changes in geometry that occur during isomerisation lead to a much less stable complex between 3 and the phosphorane intermediate.  相似文献   

15.
Using dynamic solid state (15)N CPMAS NMR spectroscopy (CP = cross polarization, MAS = magic angle spinning), the kinetics of the degenerate intermolecular double and quadruple proton and deuteron transfers in the cyclic dimer of (15)N labeled polycrystalline 3,5-diphenyl-4-bromopyrazole (DPBrP) and in the cyclic tetramer of (15)N labeled polycrystalline 3,5-diphenylpyrazole (DPP) have been studied in a wide temperature range at different deuterium fractions in the mobile proton sites. Rate constants were measured on a millisecond time scale by line shape analysis of the doubly (15)N labeled compounds, and by magnetization transfer experiments on a second timescale of the singly (15)N labeled compounds in order to minimize the effects of proton-driven (15)N spin diffusion. For DPBrP the multiple kinetic HH/HD/DD isotope effects could be directly obtained. By contrast, four rate constants k(1) to k(4) were obtained for DPP at different deuterium fractions. Whereas k(1) corresponds to the rate constant k(HHHH) of the HHHH isotopolog, an appropriate kinetic reaction model was needed for the kinetic assignment of the other rate constants. Using the model described by Limbach, H. H.; Klein, O.; Lopez Del Amo, J. M.; Elguero, J. Z. Phys. Chem. 2004,218, 17, a concerted quadruple proton-transfer mechanism as well as a stepwise consecutive single transfer mechanism could be excluded. By contrast, using the kinetic assignment k(2) approximately k(3) approximately k(HHHD) approximately k(HDHD) and k(3) approximately k(HDDD) approximately k(DDDD), the results could be explained in terms of a two-step process involving a zwitterionic intermediate. In this mechanism, each reaction step involves the concerted transfer of two hydrons, giving rise to primary kinetic HH/HD/DD isotope effects, whereas the nontransferred hydrons only contribute small secondary effects, which are not resolved experimentally. By contrast, the multiple kinetic isotope effects of the double proton transfer in DPBrP and of the triple proton proton transfer in cyclic pyrazole trimers studied previously indicate concerted transfer processes. Thus, between n = 3 and 4 a switch of the reaction mechanism takes place. This switch is rationalized in terms of hydrogen bond compression effects associated with the multiple proton transfers. The Arrhenius curves of all processes are nonlinear and indicate tunneling processes at low temperatures. In a preliminary analysis, they are modeled in terms of the Bell-Limbach tunneling model.  相似文献   

16.
The catalytic mechanism of Mus musculus adenosine deaminase (ADA) has been studied by quantum mechanics and two‐layered ONIOM calculations. Our calculations show that the previously proposed mechanism, involving His238 as the general base to activate the Zn‐bound water, has a high activation barrier of about 28 kcal/mol at the proposed rate‐determining nucleophilic addition step, and the corresponding calculated kinetic isotope effects are significantly different from the recent experimental observations. We propose a revised mechanism based on calculations, in which Glu217 serves as the general base to abstract the proton of the Zn‐bound water, and the protonated Glu217 then activates the substrate for the subsequent nucleophilic addition. The rate‐determining step is the proton transfer from Zn‐OH to 6‐NH2 of the tetrahedral intermediate, in which His238 serves as a proton shuttle for the proton transfer. The calculated kinetic isotope effects agree well with the experimental data, and calculated activation energy is also consistent with the experimental reaction rate. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

17.
It has been shown by ESR spectroscopy that the title reaction involves abstraction of hydrogen from the phosphite, since at ?10°C the reaction has a kinetic deuterium isotope effect, kH/kD, or ~3. The rate constant for hydrogen abstraction is c. 2 × 104 M?1 s?1. There is no significant addition of alkoxyl radicals to the phosphite.  相似文献   

18.
A novel ruthenium-catalyzed C−H activation methodology for hydrogen isotope exchange of aromatic carbonyl compounds is presented. In the presence of catalytic amounts of specific amine additives, a transient directing group is formed in situ, which directs selective deuteration. A high degree of deuteration is achieved for α-carbonyl and aromatic ortho-positions. In addition, appropriate choice of conditions allows for exclusive labeling of the α-carbonyl position while a procedure for the preparation of merely ortho-deuterated compounds is also reported. This methodology proceeds with good functional group tolerance and can be also applied for deuteration of pharmaceutical drugs. Mechanistic studies reveal a kinetic isotope effect of 2.2, showing that the C−H activation is likely the rate-determining step of the catalytic cycle. Using deuterium oxide as a cheap and convenient source of deuterium, the methodology presents a cost-efficient alternative to state-of-the-art iridium-catalyzed procedures.  相似文献   

19.
The deuterium isotope effect on the 13C NMR chemical shifts of some α-2-hydroxyaryl-N-phenylnitrones (Schiff base N-oxides) was studied. The existence of an intramolecular hydrogen bond with the proton localized on the phenolic oxygen atom was evidenced. Exceptionally large isotope effects ΔC-2(D) and ΔC-α(D) suggest that the substitution of the proton of the OH group by deuterium leads to a weakening of the hydrogen bond and some conformational changes in the molecule. This conclusion was drawn on the basis of a comparison of the deuterium isotope effects of Schiff base N-oxides and parent Schiff bases. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
P. Remuzon  M. Wakselman 《Tetrahedron》1977,33(23):3097-3103
A kinetic study of the alkaline hydrolysis and the imidazole-catalysed hydrolysis of a series of o - or p-acetoxybenzyl bromides and p-nitrophenyl ethers has been determined as a function of pH and temperature. The reactions were followed by disappearance of ester and by release of bromide or p-nitrophenolate anions. In both cases, the rates obtained were equal, and proportional to the ester and nucleophile concentrations. The formation of N- acetyl-imidazole intermediate, followed at 245 nm, as well as the observed deuterium isotope effect, correspond to a nucleophilic attack on the carbonyl group. When the acetoxy group is hindered, the reaction with hydroxide ion is slower, no catalysis can occur, and imidazole may react directly at the benzylic site of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号