首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

3.
Two new Keggin templated supramolecular compounds, [Zn2(H2biim)5(SiM12O40)] · 4H2O [M = W ( 1 ), Mo ( 2 )] (H2biim = 2, 2′‐biimidazole), were synthesized under hydrothermal conditions by using the ligand 2, 2′‐biimidazole. They were characterized by single‐crystal X‐ray diffraction, elemental analyses, IR and photoluminescence spectroscopy as well as cyclic voltammetry. The two isostructural compounds are constructed by two discrete supramolecular moieties: the inorganic chains consist of Keggin anions and metal‐organic chains constructed by [Zn2(H2biim)5]4+ subunits. In the dinuclear [Zn2(H2biim)5]4+ subunit, the H2biim ligands exhibit a dual role, chelating and linking. The metal‐organic chains further construct a 3D supramolecular framework with channels, in which the Keggin‐based inorganic chains are accommodated. The electrochemical behaviors of compounds 1 and 2 bulk‐modified carbon paste electrodes ( 1 ‐CPE, 2 ‐CPE) were studied.  相似文献   

4.
Cu4P4X4Fe2 (X = Cl, Br) cages are formed upon reactions of octaethyl‐1,1′‐diphosphaferrocene (odpf) with the respective CuI halide in CH2Cl2/CH3CN solvent mixtures. These cages have adamantoid Cu4X4P2 cores with two planar anelated CuP2Fe rings as the flaps. Both complexes 1 and 2 feature tri‐ and tetracoordinate CuI ions and an additional acetonitrile solvent molecule in the crystal. In 1 , the solvent molecule is coordinated to one copper ion whereas it remains uncoordinated in 2 . The tricoordinate CuI ions show a slight pyramidalization at the metal atom and somewhat short contacts to the other tricoordinate CuI ion in 2 or the Cu3‐triangle in 1 . NMR spectroscopy revealed easy decoordination of the acetonitrile ligand from 1 and a dynamic “windshield‐wiper”‐type process that interconverts the differently coordinated phospholide rings of each odpf ligand and the tri‐ and tetracoordinate CuI ions.  相似文献   

5.
A new 2,2′‐bi‐1H‐benzimidazole bridging organic ligand, namely 1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole, C26H20N6, L or (I), has been synthesized and used to create three new one‐dimensional coordination polymers, viz.catena‐poly[[dichloridomercury(II)]‐μ‐1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligand L crystallizes with two symmetry‐independent half‐molecules in the asymmetric unit and each L molecule resides on a crytallographic inversion centre. In structures (II)–(IV), the L ligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts an anti conformation in the solid state and forms a two‐dimensional network in the crystallographic bc plane viaπ–π and C—H...π interactions. The three HgII coordination complexes, (II)–(IV), have one‐dimensional zigzag chains composed of L and HgX2 (X = Cl, Br and I), and the HgII centres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others, i.e. a twist in the flexible bridging ligand.  相似文献   

6.
Two new layered complexes with the formulas of {[Cu(H2O)(HL)2Cl](NO3)}n ( 1 ) and {[Cu(H2O)2(HL)2](NO3)2}n ( 2 ) were solvothermally synthesized by the reactions of the bulky conjugated 4′‐(4‐hydroxyphenyl)‐4,2′:6′,4′′‐terpyridine ligand (HL) with different CuII salts, which were further used as photocatalysts to achieve hydrogen production from water splitting. Single‐crystal structural analyses reveal that both complexes feature coplanar (4 4) layers with different connection manners between the HL extended Z‐shaped chains. More interestingly, 1 possessing more negative conduction band potential and higher structural stability exhibits a large hydrogen production rate of 2.43 mmol · g–1 · h–1, which is four times higher than that of 2 . Thus, the CuII‐based coordination polymers modified by the bulky conjugated organic ligand can become potentially promising non‐Pt photocatalysts for hydrogen production from water splitting.  相似文献   

7.
Two coordination polymers, {[Zn2(L)(bpy)] · 2H2O}n ( 1 ) and [Zn2(L)(bpe)]n ( 2 ) [H4L = terphenyl‐2,2′,4,4′‐tetracarboxylic acid, bpy = 4,4′‐bipyridine, and bpe = 1,2‐bis(4‐pyridyl)ethane], were hydrothermally synthesized under similar conditions and characterized by elemental analysis, IR spectroscopy, TGA, and single‐crystal X‐ray diffraction analysis. Compound 1 has a 3D framework containing Zn–O–C–O–Zn 1D chains. Compound 2 exhibits a 3D framework, which features tubular channels. The channels are occupied by bpe molecules. The differences in the structures demonstrate that the auxiliary dipyridyl‐containing ligand has a significant effect on the construction of the final framework. Additionally, the fluorescent properties of the two compounds were also studied in the solid state at room temperature.  相似文献   

8.
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature.  相似文献   

9.
Three novel zinc complexes [Zn(dbsf)(H2O)2] ( 1 ), [Zn(dbsf)(2,2′‐bpy)(H2O)]·(i‐C3H7OH) ( 2 ) and [Zn(dbsf)(DMF)] ( 3 ) (H2dbsf = 4,4′‐dicarboxybiphenyl sulfone, 2,2′‐bpy = 2,2′‐bipyridine, i‐C3H7OH = iso‐propanol, DMF = N,N‐dimethylformamide) were first obtained and characterized by single crystal X‐ray crystallography. Although the results show that all the complexes 1–3 have one‐dimensional chains formed via coordination bonds, unique three‐dimensional supramolecular structures are formed due to different coordination modes and configuration of the dbsf2? ligand, hydrogen bonds and π–π interactions. Iso‐propanol molecules are in open channels of 2 while larger empty channels are formed in 3 . As compared with emission band of the free H2dbsf ligand, emission peaks of the complexes 1–3 are red‐shifted, and they show blue emission, which originates from enlarging conjugation upon coordination. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The complex [Cu(HGLYO)2(bipy)] ( I ) and two new copper(II) coordination polymers with the formulas {[Cu(GLYO)1‐x(ox)x(bipy)]·2.5H2O}n [GLYO = glycolato dianion, ox = oxalato dianion, bipy = 2, 2′‐bipyridine, x = 0.56 (in II ) or 0.71 (in III )] were synthesized using copper(II) glycolate as starting material and were characterized by IR, UV‐Vis and EPR spectrometry, by magnetic measurements ( II and III ), and by single‐crystal X‐ray diffractometry. Both II and III crystallized as one‐dimensional polymers composed of Cu2O2‐centred dimers with a Cu‐Cu distance of 3.282(1)Å (mean of II and III ) that are linked by Cu2(OCO)2 rings with a Cu‐Cu distance of 5.237(1)Å (mean of II and III ), both dianions acting as (μ‐1, 1, 2, 3) three‐way bridges connecting the two copper atoms of one dimer with one copper atom of a neighbouring dimer. Each copper atom is coordinated tetragonally in a CuN2O4 chromophore. In the mononuclear complex I the copper atom has a tetragonally distorted octahedral environment.  相似文献   

11.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

12.
The synthesis of two O‐2′,3′‐cyclic ketals, i.e., 5 and 6 , of the cytostatic 5‐fluorouridine ( 2 ), carrying a cyclopentane and/or a cyclohexane ring, respectively, is described. The novel compounds were characterized by 1H‐, 19F‐, and 13C‐NMR, and UV spectroscopy, as well as by elemental analyses. Their crystal structures were determined by X‐ray analysis. Both compounds 5 and 6 show an anti‐conformation at the N‐glycosidic bond which is biased from +ac to +ap compared to the parent nucleoside 2 . The sugar puckering is changed from 2′E to 3′E going along with a reduction of the puckering amplitude τm by ca. 10–13° due to the ketalization. The conformation about the sugar exocyclic bond C(4′)? C(5′) of 5 and 6 remains unchanged, i.e., g+, compared with compound 2 .  相似文献   

13.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

14.
The new synthesized ligand (DADMBTZ = 2,2′‐diamino‐5,5′‐dimethyl‐4,4′‐bithiazole), which is mentioned in this text, is used for preparing the two new complexes [Zn(DADMBTZ)3](ClO4)2. 0.8MeOH.0.2H2O ( 1 ) and [Cd(DADMBTZ)3](ClO4)2 ( 2 ). The characterization was done by IR, 1H, 13C NMR spectroscopy, elemental analysis and single crystal X‐ray determination. In reaction with DADMBTZ, zinc(II) and cadmium(II) show different characterization. In 2 , to form a tris‐chelate complex with nearly C3 symmetry for coordination polyhedron, DADMBTZ acts as a bidentate ligand. In 1 , this difference maybe relevant to small radii of Zn2+ which make one of the DADMBTZ ligands act as a monodentate ligand to form the five coordinated Zn2+ complex. In both 1 and 2 complexes the anions are symmetrically different. 1 and 2 complexes form 2‐D and 3‐D networks via N‐H···O and N‐H···N hydrogen bonds, respectively.  相似文献   

15.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

16.
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb64‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb64‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated.  相似文献   

17.
The reaction of N,N′‐di(2‐pyridyl)formamidine (HDpyF) with MnCl2‐4H2O afforded the complex MnCl2(HDpyF), which was characterized by X‐ray crystallography. The HDpyF ligand chelates to the Mn(II) center through the first and the third nitrogen atoms to form a six‐membered ring, leaving the second and the fourth nitrogen atoms uncoordinated. The HDpyF ligand is crystallographically disordered such that two different molecules can be solved. The neutral HDpyF ligand adopts the new s‐cis‐syn‐s‐trans conformation.  相似文献   

18.
The coordinative interaction between dichlorobis(4-chlorophenyl)tin(IV) and the chelating ligand, 4,4′-dimethyl-2-2′-bipyridyl (dmbipy), has allowed the isolation of both cis- and trans-[SnR2] configurational isomers of the derived complex, [Sn(4-ClC6H4)2Cl2(dmbipy)], constituting the first such case reported for octahedral [SnR2X2L2] systems.  相似文献   

19.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

20.
Metal Derivatives of Molecular Compounds. IX. Bis(1,2-dimethoxyethane- O,O′ )lithium Phosphanide, Arsanide, and Chloride – Three New Representatives of the Bis(1,2-dimethoxyethane- O,O′ )lithium Bromide Type Experiments to obtain thermally unstable lithium silylphosphanide at –60 °C from a 1,2-dimethoxyethane solution resulted in the isolation of its dismutation product bis(1,2-dimethoxyethane-O,O′)lithium phosphanide ( 1 ). The homologous arsanide 2 precipitated after a frozen solution of arsane in the same solvent had been treated with lithium n-butanide at –78 °C. Unexpectedly, too, the analogous chloride 3 and bromide 4 were formed in reactions of 1-chloro-2,2-bis(trimethylsilyl)-1λ3-phosphaethene with (1,2-dimethoxyethane-O,O′)lithium bis(trimethylsilyl)stibanide and of lithium 1,2,3,4,5-pentaphenyl-2,3-dihydro-1λ3-phosphol-3-ide with ω-bromostyrene, respectively. The monomeric complexes 1 {–100 ± 3 °C; a = 1391.1(4); b = 809.8(2); c = 1249.1(3) pm; β = 102.84(2)°}, 2 {–100 ± 3 °C; a = 1398.3(4); b = 819.8(3); c = 1258.5(4) pm; β = 103.35(2)°} and 3 {–100 ± 3 °C; a = 1308.4(2); b = 788.2(1); c = 1195.6(1) pm; β = 95.35(1)°} crystallize in the monoclinic space group C2/c with four solvated ion pairs in the unit cell; they are isotypic with bis(1,2-dimethoxyethane-O,O′)lithium bromide ( 4 ) {–73 ± 2 °C; a = 1319.0(2); b = 794.1(1); c = 1214.3(2) pm; β = 96.22(1)°}, already studied by Rogers et al. [13] at room temperature. The neutral complexes show a trigonal bipyramidal configuration of symmetry C2, pnicogenanide or halide anions occupying equatorial sites {Li–P 260.4(4); Li–As 269.8(6); Li–Cl 238.6(7); Li–Br 256.3(10) pm} and the chelate ligands spanning equatorial and axial positions {Li–Oeq 205.4(4) to 207.4(4); Li–Oax 208.9(3) to 215.5(2) pm}. The coordination within the (dme)2Li fragment, the Li–X distances (X = P, As, Cl, Br), the structure of the chelate rings, and the packing of the neutral complexes are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号