首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
The science-examination preferences of college science students and their science faculty were surveyed, using the TOPE questionnaire at a teacher training and a community college in Israel and the U.S., respectively. The results obtained in the two countries were “intrally” and “interly” compared, in total and by gender, in terms of significant/no significant differences in the preferences made and the reasons provided by the students and faculty for their ranking. The findings suggest that: (a) college science students prefer mostly, the Israelis more so than the Americans, the nonconventional, written exams in which time is unlimited and any materials are allowed; (b) American college science students prefer the traditional class science examination (G) significantly more than their Israeli counterparts; (c) the preference of higher order cognitive skills (HOCS)-oriented exams (B. I and H) is significantly higher for female science students in Israel compared with no gender difference concerning the preferred examinations in the US, and rejection of oral examinations by all in both countries, significantly more by female students; and (d) there exists a significant gap between the preferred type of examinations of science students and their faculty in both countries. In view of the HOCS-orientation and the goal of conceptual understanding in current reforms of science education worldwide, the consonance between these curriculum objectives and examination practices is advocated. This, in turn, requires that provisions be made to lessen the gap between science teachers and their students' examination type preferences for better science learning to occur.  相似文献   

2.
The art of teaching freshmen students is undergoing a rapid paradigm change. Classical forms of teaching are not applicable any more and an unmanageable offer of new multimedia tools and concepts is glutting the market. Moreover, compared to previous courses, the class size triples. In view of these challenges, we implemented a new teaching concept best described as Kaizen learning. By Kaizen learning, we define a teaching philosophy that is based on a concise mix of short learning units (with feedback loops and tests) and of carefully chosen repetitions (also with feedback loops and tests) to calibrate a course for the students. Here, this intensive blended, student-centred learning paradigm is analysed together with its direct impact on the students’ performance. This case study leads to easy-to-implement key drivers for successfully teaching science in Oman, such as (1) human–human interaction, (2) clearly communicated expectations, (3) avoidance of a short-term learning attitude, (4) a no-calculator policy, (5) continuous Kaizen learning, and (6) balanced combination of traditional teaching and e-learning.  相似文献   

3.
Faculty members at Purdue University in the departments of Earth and Atmospheric Sciences, Biological Sciences, and Chemistry conducted a reform effort for the undergraduate curriculum utilizing action‐based research teams. These action‐based research teams developed, implemented, and assessed constructivist approaches to teaching undergraduate science content in each department. This effort utilized a partnership of scientists, science educators, master teachers, graduate students, and undergraduate students. Results indicated that the project partners were able to (a) implement more inquiry‐based teaching that emphasized conceptual understanding, (b) provide opportunities for cooperative learning experiences, (c) use models as an ongoing theme, (d) link concepts and models to real‐world situations, e.g., field trips, (e) provide a more diverse range of assessment strategies, and (f) have students present their understandings in a variety of different forms. Further, we found that we were able to (a) involve graduate and undergraduate students, classroom teachers, scientists, and science educators together to work on the reform in a collaborative manner, (b) bring multiple perspectives for teaching and for science to support instruction and, (c) provide scientists and graduate science students (who will become university professors) with more effective teaching models. We also found that the collaborative action‐based research process was effective for contributing to the reform of undergraduate teaching.  相似文献   

4.
An inservice program designed to enhance the knowledge and skills of elementary school teachers with respect to science content, effective teaching strategies, and gender equity was implemented as a semester-long course. During the course, teachers explored new science content in chemistry and physics and then collaboratively developed lesson plans from it based on hands-on, discovery-centered learning, enmeshed in strategies that could maximize female student interest and participation in science. Teachers tried out their lessons between course sessions in their own classrooms and then collaboratively reflected on their progress and problems in subsequent sessions. Program results were positive for both teachers and students. Teachers reported significant increases in both their level of knowledge of and their confidence in teaching chemistry and physics concepts, as well as in their knowledge of strategies for addressing gender inequities. Project students' attitudes, particularly those of the girls, improved for some dimensions, remained stable for others, and declined for one; the girls also increased their level of active participation in science activities. Overall, the project seems to have had a positive impact on science teaching content and pedagogy, and on student (especially girls') interest and active participation in science.  相似文献   

5.
Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K–12 science education standards. However, there is relatively little is known about effective ways of teaching science through engineering design. The study explores the approaches or strategies used by a sixth grade science teacher to teach science and engineering in an integrative manner. Classroom observations, teacher interview, and student surveys were used to study the features of engineering integration implemented by the teacher and the changes in student interest in science and engineering by participating in an engineering design‐based science unit. Findings suggest that the teacher explicitly included practices and core ideas from engineering and science; used an engaging, motivating engineering challenge; and provided students with opportunities to be autonomous. Students engaged in the activities in the engineering unit and their interest level slightly increased. The results suggest that the three strategies that the teacher used to teach engineering and science are important foundations of integrated science and engineering education.  相似文献   

6.
This study highlights the factors that contribute to excellence in urban science teaching as pinpointed by five urban African‐American science teachers who have taught successfully in the urban system for over 10 years. These teachers shared their experiences and reflections on the qualities that contributed to their success and persistence as urban science teachers. Their ability to understand and care for their students was a major contributing factor; other contributing factors included in‐depth knowledge and love of science, caring and commitment to the whole child, effective classroom management strategies, high expectations and motivation of their students, and an understanding and acceptance of the varying parental involvement in the educational decisions about their child.  相似文献   

7.
Inclusion is the meaningful participation of students with disabilities in general education classrooms. The CLASS project (Creating Laboratory Access for Science Students) is a unique initiative offering training and resources to help educators provide students with a variety of physical, sensory and learning disabilities equal access in the science laboratory or field. To determine whether participants believed a 2‐week residential workshop sponsored by CLASS raised disability awareness and provided teacher training in inclusive science teaching practice, a multipoint Likert scale survey and questionnaire was completed by all participants (N= 20) in four workshops. Participants reported large gains in their preparedness to teach science to students with disabilities. Participants also reported gains in their familiarity with instructional strategies, curricula, and resources and their ability to design, select, and modify activities for students with disabilities. Finally, shifts in attitudes about teaching science to students with disabilities were noted.  相似文献   

8.
This paper presents a case study for strategic engagement of students in a Calculus course in order to produce increased learning in the classroom. Since it has been shown that active learning can promote greater comprehension for students in science, technology, engineering, and mathematics (STEM) courses, the researcher utilized many types of active learning techniques to enhance classroom instruction. The key components implemented are presented as a model of enhanced learning through developed classroom engagement. This course redesign model entitled, Strategic Engagement for Increased Learning (SEIL), has the potential to (1) contribute to the body of knowledge on ways to improve mathematics skills for college students, (2) identify successful teaching strategies and technologies that will promote the retention of STEM students, (3) increase the success rate of students taking Calculus, and (4) help produce more STEM graduates needed for the STEM workforce in the United States of America.  相似文献   

9.
The purpose of this study was to describe relationships among instructor and student goals, course design, and student strategies for learning physics in a traditional introductory undergraduate physics course for nonmajors. The procedures included 16 hours ofnonparticipant observation, during which detailed field notes and photographs were taken and documents were collected. Audiotaped open-ended interviews were given to instructors and students, and all students participated in a limited survey. The data were analyzed using qualitative methods of the Chicago School. Results indicated that both differing goals of students and instructors and the structure of the course inhibited the understanding of physics and were conducive to students engaging in unexpected behaviors designed to help them successfully pass the course. The consequences of the structure of the course and subsequent student behaviors inhibited their understanding and appreciation of physics and deterred them from enrolling in further science courses. The paper includes implications for teaching introductory college physics.  相似文献   

10.
Three mathematics and science educators reexamine and reflect on their teaching within the context of the American Association for the Advancement of Sciences (AAAS) and National Council of Mathematics' call to make math and science education accessible to all. The paper highlights the importance of teachers reflecting on their teaching practices in order to create opportunities for their students especially those in the urban setting. The educators argue that teachers' reflection on their teaching can cause them to recognize and validate their students' ways of knowing as they identify the students' hidden/concealed abilities that are often masked by their behaviors. The educators discuss their experiences and highlight the lessons that they learned about ways to prepare teachers to successfully teach math and science students in urban settings. Culturally responsive pedagogy and cultural competency are critical skills that teachers need to develop in order to teach all children, especially those in the math and science classroom in the urban setting.  相似文献   

11.
Two sections of middle school science were taught by two longtime teachers where one used an STS approach and the other followed the more typical textbook approach closely. Pre‐ and post assessments were administered to one section of students for each teacher. The testing focused on student concept mastery, general science achievement, concept applications, use of concepts in new situations, and attitudes toward science. Videotapes of classroom actions were recorded and analyzed to determine the level of the use of STS teaching strategies in the two sections. Information was also be collected that gave evidence of and noted changes in student creativity and the continuation of student learning and the use of it beyond the classroom. Major findings indicate that students experiencing the STS format where constructivist teaching practices were used to (a) learn basic concepts as well as students who studied them directly from the textbook, (b) achieve as much in terms of general concept mastery as students who studied almost exclusively by using a textbook closely, (c) apply science concepts in new situations better than students who studied science in a more traditional way, (d) develop more positive attitudes about science, (e) exhibit creativity skills more often and more uniquely, and (f) learn and use science at home and in the community more than did students in the textbook dominated classroom.  相似文献   

12.
This paper reports on initial results from an ongoing evaluation study of a National Science Foundation project to implement reform‐oriented teaching practices in college science and mathematics courses. The purpose of this study was to determine what elements of reform teaching are being utilized by college faculty members teaching undergraduate science and mathematics courses, including a qualitative estimate of the frequency with which they are used. Participating instructors attended summer institutes that modeled reform‐based practices and fostered reflection on current issues in science, mathematics, and technological literacy for K‐16 teaching, with an explicit emphasis on the importance of creating the best possible learning experience for prospective K‐12 science and mathematics teachers. Utilizing a unique classroom observation protocol (the Oregon‐Teacher Observation Protocol) and interviews, the authors (a) conclude that some reform‐oriented teaching strategies are evident in undergraduate mathematics and science instruction and (b) suggest areas in which additional support and feedback are needed in order for higher education faculty members to adopt reform‐based instructional methodology.  相似文献   

13.
This report describes an evaluation project that aimed to assess the potential of two elementary science specialists, as compared to elementary classroom teachers, to realize the reforms vision for science instruction in elementary classrooms. Participant science specialist background, views of elementary science teaching, and planning and assessment practices were compared to those of regular elementary classroom teachers in the specialist district, as well as in a comparable district not employing specialists. Specialists' views and practices were better aligned with those envisioned by current national reform documents in science education. Despite the constraints imposed by the nature of a program evaluation, the present report provides evidence to suggest that students taught by the science specialists (a) were engaged in open‐ended, inquiry‐oriented, science‐based activities of the kind often advocated, but mostly absent, in elementary school, and (b) demonstrated problem solving and higher order and critical thinking skills. This report is the first to provide empirical support for the advocated “effectiveness” of elementary science specialists in achieving the visions espoused by current reform efforts.  相似文献   

14.
This article reports on the results of a study involving an innovative assessment program initiated to investigate student predictions and revised explanations regarding a variety of optical phenomena. The assessments were administered via videotape to two classes of high school physics students from different high schools. Two high school teachers with similar educational and teaching backgrounds administered the tapes to the two groups of students. The school environments and the ability levels of the two student groups were similar. The students of the teacher with greater experience with this new form of assessment provided considerably more substantive explanations to the phenomena presented on the videos. The results of the case study suggest that the introduction of new forms of assessment in science education, although desirable, will require significant reordering of the goals and strategies of science teaching.  相似文献   

15.
This paper presents and evaluates a hypothetical learning trajectory by which students bridge the transition from elementary to university-level instruction regarding the concept of vector. The trajectory consists of an instructional sequence of five tasks and begins with a problem in context. Each task is carried out with the support of a Virtual Interactive Didactic Scenario, accompanied by exploration and guided learning sheets, in which the problem is introduced through the simulation of the movement of a robotic arm. This proposal was implemented at the beginning of the SARS-CoV-2 pandemic using various digital media. Two teaching experiments were carried out with engineering students at a Mexican public university. We present the hypothetical learning trajectory that should be followed toward solving the task, and contrast it in each case with the students’ actual learning trajectory. The results show that more than 70 % of the students successfully transitioned from the geometrical vector representation of elementary physics to the algebraic one.  相似文献   

16.
17.
This study focused on science and math professional learning communities (PLCs) that were implemented through a university‐urban high school partnership. These PLCs were part of mandated school‐wide, content‐based PLCs implemented as part of the reform efforts initiated in an urban school to address the school's failure to meet Adequate Yearly Progress (AYP) for four years consecutively and low graduation rate (less than 25%) for male students. The key issues were (a) students had continually earned low test scores; (b) there was continuous principal turnover; (c) faculty morale was at an all‐time low, and the quality of teaching was very poor; and (d) the students were not effectively disciplined. The study examined the impact that university faculty‐led mandated PLCs have on teachers' practices and students' learning and achievement. Analysis of data revealed practices that were effective in developing and implementing these successful math and science PLCs. Three themes emerged: ethics of care, teacher agency, and aesthetics of professional interactions. Each theme contained key features that appeared to contribute to the implementation of a successful PLC.  相似文献   

18.
This study investigated the effects of cooperative learning instruction versus traditional teaching methods on students' earth science achievement in secondary schools. A total of 770 ninth-grade students enrolled in 20 sections of a required earth science course participated in this nonequivalent control group quasi-experiment. The control groups (n= 10) received a traditional approach, while the experimental groups (n= 10) used cooperative strategies. Study results include (a) no significant differences were found between the experimental groups and the control groups when overall achievement (F= 0.13, p > .05), knowledge-level (F= 0.12, p > .05), and comprehension-level (F= 0.34, p > .05) test items were considered; and (b) students who worked cooperatively performed significantly better than students who worked alone on the application-level test items (F= 4.63, p < .05). These findings suggest that cooperative-learning strategies favor students' earth science performance at higher but not lower levels of cognitive domains in the secondary schools.  相似文献   

19.
Preservice teachers (PSTs) participated in Family Science Learning Events (FSLEs) at a university designated as a Hispanic Serving Institution. PSTs were required by the instructor to conceive and design culturally relevant science activities as well as implement these activities with K‐8 students and their families during three separate FSLEs each semester. After school venues included elementary and middle schools located in ethnically diverse school districts. Data collected from these future teachers included qualitative PST reflections, lesson plans, project board/activity evaluation by peers, and a quantitative survey instrument (modified SEBEST) to assess PSTs perceptions of teaching diverse learners. Results suggest that using FSLEs as an integral component of teacher preparation can be a powerful facilitator of learning for all involved, increasing excitement for learning, confidence in using culturally relevant activities and valuable experience in working with family members, particularly Hispanics. In addition, using culturally relevant science activities deepened content knowledge and gave PSTs the opportunity to use culturally responsive activities with Hispanic students and their families, increasing feelings of self‐efficacy in science teaching with diverse learners.  相似文献   

20.
Many popular hands-on science activities, as traditionally implemented, fail to support inquiry-based science instruction, because the activities direct teachers to terminate lessons prematurely. This paper presents a model describing one approach for extending seemingly limited hands-on activities into full-inquiry science lessons. The strategy involves (a) discrepant events to engage students in direct inquiry; (b) teacher-supported brainstorming activities to facilitate students in planning investigations; (c) effective written job performance aids to provide structure and support; (d) requirements that students provide a product of their research, which usually includes a class presentation and a graph; and (e) class discussion and writing activities to facilitate students in reflecting on their activities and learning. The paper presents the model as a tool for facilitating science teachers' efforts to understand and implement the type of powerful, effective, and manageable inquiry-based science instruction called for in the National Science Education Standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号