首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural stabilities of endo and exo conformations of retronecine and heliotridine molecules were analyzed using different ab initio, semiempirical, and molecular mechanics methods. All electron and pseudopotential ab initio calculations at the Hartree-Fock level of theory with 6-31G* and CEP-31G* basis sets provided structures in excellent agreement with available experimental results obtained from X-ray crystal structure and 1H-NMR (nuclear magnetic resonance) studies in D2O solutions. The exo conformations showed a greater stability for both molecules. The most significant difference between the calculations was found in the ring planarity of heliotridine, whose distortion was associated with the interaction between the O(11)H group and the C(1)-C(2) double bond as well as with a hydrogen bond between O(11)H and N(4). The discrepancy between pseudopotential and all-electron optimized geometries was reduced after inclusion of the innermost electrons of C(1), C(2), and N(4) in the core potential calculation. The MNDO, AM1, and PM3 semiempirical results showed poor agreement with experimental data. The five-membered rings were observed to be planar for AM1 and MNDO calculations. The PM3 calculations for exo-retronecine showed a greater stability than the endo conformer, in agreement with ab initio results. A good agreement was observed between MM3 and ab initio geometries, with small differences probably due to hydrogen bonds. While exo-retronecine was calculated to be more stable than the endo conformer, the MM3 calculations suggested that endo-heliotridine was slightly more stable than the exo form. © 1996 by John Wiley & Sons, Inc.  相似文献   

2.
The geometries of molecules H_3AXAH_3(X=O,S,Se and A=C,Si)have been optimizedusing STO-3G ab initio calculations and gradient method and the results are in good agreement withreported experimental values.From the STO-3G optimized geometries,we have also calculated theelectronic structures of these molecules using 4-31G and 6-31G basis sets to obtain the MO energies.atomic net charges and dipole moments.The ionization potentials calculated by 6-31G basis set are ingood agreement with experimental values.  相似文献   

3.
Geometrical parameters for pyridine have been calculated using the 6-31G, 6-31G*(5D), 6-31G**(6D), and 6-31G(2 × 6D) basis sets. Comparisons are made with a microwave substitution structure and with results of other ab initio calculations reported in the literature. Particular attention is paid to the influence of polarization functions on the magnitude of the ring angle, 〈C6N1C2, which is analogous to the ipso angle in monosubstituted benzene derivatives.  相似文献   

4.
The molecular geometries of the 1-chloro-, 1-fluoro-, 1-methyl-, and 1-hydrogenosilatranes were fully optimized by the restricted Hartree-Fock (HF) method supplemented with 3-21G, 3-21G(d), 6-31G(d), and CEP-31G(d) basis sets; by MP2 calculations using 6-31G(d) and CEP-31G(d) basis sets; and by GGA-DFT calculations using 6-31G(d5) basis set with the aim of locating the positions of the local minima on the energy hypersurface. The HF/6-31G(d) calculations predict long (>254 pm) and the MP2/CEP calculations predicted short (∼225 pm) equilibrium Si(SINGLE BOND)N distances. The present GGA-DFT calculations reproduce the available gas phase experimental Si(SINGLE BOND)N distances correctly. The solid phase experimental results predict that the Si(SINGLE BOND)N distance is shorter in 1-chlorosilatrane than in 1-fluorosilatrane. In this respect the HF results show a strong basis set dependence, the MP2/CEP results contradict the experiment, and the GGA-DFT results in electrolytic medium agree with the experiment. The latter calculations predict that 1-chlorosilatrane is more polarizable than 1-fluorosilatrane and also support a general Si(SINGLE BOND)N distance shortening trend for silatranes during the transition from gas phase to polar liquid or solid phase. The calculations predict that the ethoxy links of the silatrane skeleton are flexible. Consequently, it is difficult to measure experimentally the related bond lengths and bond and torsion angles. This is the probable origin of the surprisingly large differences for the experimental structural parameters. On the basis of experimental analogies, ab initio calculations, and density functional theory (DFT) calculations, a gas phase equilibrium (re) geometry is predicted for 1-chlorosilatrane. The semiempirical methods predict a so-called exo minimum (at above 310 pm Si(SINGLE BOND)N distance); however, the ab initio and GGA-DFT calculations suggest that this form is nonexistent. The GGA-DFT geometry optima were characterized by frequency analysis. © 1996 by John Wiley & Sons, Inc.  相似文献   

5.
A systematic analysis of the molecular electrostatic potential (MEP) is presented. This study has been performed with a twofold purpose: first, to study the MEP dependence with regard to the quality of the basis set used to compute the ab initio SCF wavefunction and second, to develop and to assess a new strategy for computing isoelectrostatic potential maps using the semiempirical MNDO wavefunction. The only differences between this procedure and the ab initio SCF MEP computation lie in the freezing of the inner electrons and in the origin of the first-order density matrix. The statistical analysis of MEPs computed for a large number of molecules from MNDO wavefunction and ab initio SCF wavefunctions obtained using STO-3G, 4-31G, 6-31G, 4-31G*, 6-31G*, and 6-31G** basis sets points out the ability of any wavefunction to reproduce the general topological characteristics of the MEP surfaces. Nevertheless, split-valence basis sets including polarization functions are necessary to obtain accurate MEP minimum energy values. MNDO wavefunction tends to overestimate the MEP minima depth by a constant factor and shows an excellent ability to reflect the relative variation of MEP minima energies derived from a rather sophisticated (6-31G*) basis set, lacking of the shortcomings detected in the semiempirical CNDO approximation.  相似文献   

6.
A combined computational (MO ab initio) and structural-statistical study of molecules containing the O? C? N moiety is presented. Aminomethanol, the simplest member of this series, was computed using GAUSSIAN-82 with the 3-21G and 6-31G* basis sets and with complete geometry optimization, as well as with MP3//6-31G*. A set of carefully selected molecules containing the O? C? N unit was retrieved from the Cambridge Structural Database (CSD), and its structural parameters were analyzed according to an established procedure. Comparison between experimental and computational data was thus made possible. Results are consistent with the co-existence of two unequal anomeric effects in this system: a strong nN-σ*C? O anomeric interaction, and a weak nπO-σ*C? N one. The ability of the two basis sets to reproduce the energies and structural characteristics of the stereoelectronic effects is assessed, including the significance of using polarization functions and the inclusion of correlation energy.  相似文献   

7.
Possible refinements of semiempirical methods include the use of larger basis sets and of correlated wave functions. These possibilities are investigated in semiempirical NDDO SCF calculations with the STO-3G and 4-31G basis sets, and in correlated calculations at the STO-3G level. The present approach is characterized by the analytical evaluation of all one-center terms and two-electron integrals, and the semiempirical adjustment of the remaining one-electron integrals and the nuclear repulsions. The NDDO SCF results tend to reproduce the correspondingab initio results more closely than experimental data, even if they are parametrized with respect to experiment. The explicit inclusion of electron correlation at the STO-3G level improves the calculated results only slightly.  相似文献   

8.
Analysis of the theoretical electron deformation density based on EHMO and ab initio calculations has been applied to the simple molecules F2, H2O and SO2 The effects from varied basis sets for such deformation density were sought. The accumulation of electron density between the bonded atoms calculated from EHMO and ab initio methods with STO-3G is generally under-estimated. Such phenomena are significantly improved by using split-valence basis sets e.g. 3–21G and 4–31G. The addition of d polarization functions is apparently important for the sulfur atom in sulfur-related bonding. 3–21G or 3–21G* basis sets were found to provide not only valuable deformation density distributions of molecules but also comparable orbital energy states with respect to the experimental values.  相似文献   

9.
The molecular geometry of 1-fluorosilatrane was optimized fully by restricted Hartree–Fock (HF) calculations using the 3-21G, 3-21G(d) and 6-31G(d) basis sets, with the aim of locating the positions of the local minima on the energy hypersurface. The optimized geometries were compared with available experimental (X-ray and ED) and semiempirical data. The ab initio calculations using polarized basis sets are in good agreement with those of previously reported semiempirical calculations, giving a slightly longer equilibrium Si? N distance (~ 256 pm) in the case of the endo minimum. However, the exo minimum predicted by the semiempirical methods is not supported. There was no experimental evidence for the existence of this exo minimum, and the present ab initio calculations suggest that it is highly unstable. There is considerable disagreement among the experimental results in the C? N and C? C bond lengths in various silatranes, their differences being as large as 13 pm. The present calculations predict that these differences may appear because the silatrane skeleton is flexible with low-energy, large-amplitude internal motions which introduce considerable uncertainties into the position of ring carbon atoms. © 1994 by John Wiley & Sons, Inc.  相似文献   

10.
This letter reports the results of ab initio quantum chemical calculations on the C1s core levels of model systems for a number of oxygen containing polymers. Conformational effects were studied. SCF calculations have been carried out with STO-3G and 4-31G basis sets, and Koopmans' theorem was applied to obtain the core-level binding energies. To evaluate the performance of the procedure SCF calculations were carried out on polyacrylic acid. The existence of oxygen-induced secondary substituent effects in the XPS-(ESCA-)spectra is discussed. A comparison with semi-empirical CNDO/2 results from Clark and Thomas has been made.  相似文献   

11.
The fundamental spectrum and the parameters of the potential function of a number of saturated hydrocarbon molecules are calculated in an anharmonic approximation. The calculation is performed by the variational technique using a minimal Morse-harmonic basis. The potential function is taken as the sum of the Morse function for CH bonds and the harmonic function for the skeletal and deformation vibrations. The initial approximation for the potential function is found by ab initio calculations in a 6-31G basis and refined by solving the inverse problem. The calculated CH bond dissociation energies depend significantly on the molecular structure and on the position of CH bonds in the molecule. These energies correlate well with the experimental cleavage energies of these bonds. The changes in the dipole moment of the molecule induced by vibrations were found by ab initio calculations in a 6-31G basis. The calculated IR transmission curves are in good agreement with the experimental curves.  相似文献   

12.
The potential energy surface (PES) for the cyclooctane molecule was comprehensively investigated at the Hartree–Fock (HF) level of theory employing the 3–21G, 6–31G, and 6–31G* basis sets. Six distinct true minimum energy structures (named B, BB, BC, CROWN, TBC, and TCC1), characterized through harmonic frequency analysis, were located on the multidimensional PES. Two transition state structures were also located on the PES for the cyclooctane molecule. Electron correlation effects were accounted for using the Møller–Plesset second-order perturbation theory (MP2) approach. The predicted global minimum energy structure on the ab initio PES for the cyclooctane molecule is the BC conformer. A gas phase electron diffraction study at 300 K suggested a conformational mixture while an NMR study in solution at 161.5 K predicted the BC conformer as the predominant form. The equilibrium constants reported in the present study, which were evaluated from the ab initio calculated total Gibbs free energy change values, were in good agreement with both experimental investigations. The ab initio results showed that the low temperature condition significantly favored the BC conformer while above room temperature both BC and CROWN structures can coexist. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 524–534, 1998  相似文献   

13.
Theoretical ab initio calculations are done on different mechanisms for the conversion of vinyl alcohol to acetaldehyde, both in gas phase and in solution. Several basis sets are used in order to assess the accuracy of the results in gas phase and a continuum model of the solvent is employed to mimic reactions in water solution. The results indicate a catalytic action of water in hydrated clusters in gas phase, whereas in solution, and within the error limits of our calculations, both neutral water-chain and ionic mechanisms appear to be equally probable. Finally, the action of acids or bases is tested through the analysis of the reaction of vinyl alcohol with H3O+ and HO. The results of the calculations are shown to be in qualitative agreement with the experimental facts when 6-31++G basis set is used but not when either STO-3G or 4-31G basis sets are employed.  相似文献   

14.
Interior electron densities are divided from exterior electron densities (EED ), when an effective boundary is introduced. The EED concept was used to study the quality of wavefunction tails; the basis-set dependence of ab initio MO for NH3 was studied from EED . The EED for the nonbonding orbital (3a1) increases dramatically with the size of basis sets, whereas that for the bonding orbital (1e) shows saturation even at the double zeta class. Although inclusion of polarization functions always gives the better total energy the EED (3a1) may either increase or decrease or decrease depending on the choice of the smaller or the larger exponents. The conventional choice of the polarization functions for 6-311G* and 6-311G* was found to yield worse wavefunction tails than the case of 6-311G. Much better results were obtained with the more diffuse polarization functions. The (11s7p)/[5s4p] set designed for Rydberg states as well as the 6-311 + G set proposed for negative ions gave excellent results comparable to the case of the near Hartree-Fock calculation with 56 CGTO. Considerable improvements were also achieved for 4-31G and 6-311G sets, when the exponent for the outermost s-type function was modified. The largest EED (3a1) gave the best agreement with the experimental ratio of EED 's derived from Penning ionization electron spectroscopy.  相似文献   

15.
A classical electrostatic polarization scheme using the additive distribution procedure has been applied to determine the longitudinal polarizability of an all-trans hexatriene molecule in an infinite stretched fiber. The parameters have been derived from ab initio CPHF/6-31G calculations and the electrostatic scheme has been validated via comparison with ab initio results on small clusters. Upon packing the polarizability of all-trans hexatriene increases by 7%. This small increase results from the balance between the enhancement of the polarizability due to collinear packing and the reduction associated with lateral packing.  相似文献   

16.
Ab initio MP2/6-31G* interaction energies were calculated for more than 80 geometries of stacked cytosine dimer. Diffuse polarization functions were used to properly cover the dispersion energy. The results of ab initio calculations were compared with those obtained from three electrostatic empirical potential models, constructed as the sum of a Lennard-Jones potential (covering dispersion and repulsion contributions) and the electrostatic term. Point charges and point multipoles of the electrostatic term were also obtained at the MP2/6-31G* level of theory. The point charge MEP model (atomic charges derived from molecular electrostatic potential) satisfactorily reproduced the ab initio data. Addition of π-charges localized below and above the cytosine plane did not affect the calculated energies. The model employing the distributed multipole analysis gave worse agreement with the ab initio data than the MEP approach. The MP2 MEP charges were also derived using larger sets of atomic orbitals: cc-pVDZ, 6-311 + G(2d, p), and aug-cc-pVDZ. Differences between interaction energies calculated using these three sets of point charges and the MP2/6-31G* charges were smaller than 0.8 kcal/mol. The correlated ab initio calculations were also compared with the density functional theory (DFT) method. DFT calculations well reproduced the electrostatic part of interaction energy. They also covered some nonelectrostatic short-range effects which were not reproduced by the empirical potentials. The DFT method does not include the dispersion energy. This energy, approximated by an empirical term, was therefore added to the DFT interaction energy. The resulting interaction energy exhibited an artifact secondary minimum for a 3.9-4.0 vertical separation of bases. This defect is inherent in the DFT functionals, because it is not observed for the Hartree-Fock + dispersion interaction energy.© 1996 John Wiley & Sons, Inc.  相似文献   

17.
18.
The effect of polarization functions for ab initio molecular orbital calculations at the 3-21G* level has been studied for disiloxane. Calculated molecular geometry, dipole moment, and the linearization barrier variation were analyzed for different uncontracted polarization functions. It was concluded that variation of the polarization function on oxygen has only a minor influence on the molecular properties of disiloxane, but its presence is required to obtain a bent geometry for the disiloxane bond. The calculated molecular properties of disiloxane are greatly influenced when the polarization function on silicon is varied. Two different values (0.3 and 0.9) for the exponent of the silicon polarization function provide results comparable to the experimental values for disiloxane. The only significant differences between the results obtained from ab initio calculations using the two polarization functions are in net atomic charges. The uncontracted polarization function of silicon with a value of 0.3 for its exponent is transferable to other organosilicon compounds. Calculated molecular geometries of flexible or rigid structures are in very good agreement with the experimental values.  相似文献   

19.
A potential energy function is developed to represent the interaction of small monovalent cations, Li+, Na+, and K+, with the backbone of polypeptides. The results are based on ab initio calculations up to the 6-31G* level of the interactions of the ions with acetamide and N-methylacetamide. Basis set superposition errors are corrected with the counterpoise method. A systematic overestimate of the bond polarities is taken into account by an empirical scaling procedure that uses the ratio of the experimental to ab initio dipole moment. The calculated binding energies obtained with this procedure show consistent convergence with different basis sets and are in good agreement with experimental data on cation–water and cation–dimethylformamide systems. Investigations of the calculated ab initio potential energy surface indicate that the cation–peptide interaction is dominated by electrostatics and includes a nonnegligible contribution from polarization of the peptide group by the ion. The induced polarization results in a steeper-than-Coulombic interaction and cannot be described by fixed ion–peptide partial charges electrostatics. Atomic polarizabilities located on the atoms of the ligand molecule are introduced to account for the induced polarization in the empirical energy function. A ~1/r4 attractive interaction appears in the potential function. The resulting radial and angular dependence of the potential energy surface is well reproduced. © 1995 by John Wiley & Sons, Inc.  相似文献   

20.
Giambiagi’s definition of oxidation number of an atom in a molecule has been applied successfully in theab initio SCF theory to calculate oxidation numbers using STO-3G and 4–31G basis sets for some substituted benzenes involving -F, -OH, -CH3 and -NH2 as substituents. The present study suggests that the oxidation numbers also seem to be indicative of their orientational behaviour like the net atomic charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号