首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross‐linked by three linear metal moieties such as trans‐a2PtII (with a=NH3 or MeNH2) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans‐[{Pt(NH3)2(N7‐9‐EtA‐N1)2}{Pt(MeNH2)2(N7‐9‐MeGH)}2][(ClO4)6] ? 3H2O ( 1 ) (with 9‐EtA=9‐ethyladenine and 9‐MeGH=9‐methylguanine) was crystallized from water and found to adopt a flat Z‐shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9‐MeGH, a meander‐like construct, trans,trans,trans‐[{Pt(NH3)2(N7‐9‐EtA‐N1)2}{Pt(MeNH2)2(N79‐MeGH)2}][(ClO4)6] ? [(9‐MeGH)2] ? 7 H2O ( 2 ) is formed, in which the two extra 9‐MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1 . Compound 1 , and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4+ when dissolved in [D6]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1‐methylcytosine (1‐MeC) to such a DMSO solution reveals coordination of 1‐MeC to the central Pt. In an analogous manner, 9‐MeGH can coordinate to the central Pt in [D6]DMSO. It is proposed that the proton responsible for formation of NH4+ is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z‐form to U‐form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton transfer to NH3 and formation of U(?H+) species, which exhibits an intramolecular hydrogen bond between the deprotonated N6H? of one adenine and the N6H2 group of the other adenine. Finally the question is examined, how metal cross‐linking patterns in closed metallacyclic quartets containing two adenine and two guanine nucleobases influence the overall shape (square, rectangle, trapezoid) and the planarity of a metalated purine quartet.  相似文献   

2.
Bonding mechanism of cis-Pt (NH3)Cl2 with DNA has been studied by CNDO/2 calculation. The computed results of the six models considered indicated that from the point of view of overlap population QAB and two atoms energy EAB, the most favorable bonding form was that between platinum and two N7 atoms, from guanines (G) to form [(NH3)2PtG2]3+. Thus, intrastrand cross-linkage mechanism which had been previously proposed by some authors was confirmed by our calculation. Chelation mechanism could not completely be excluded. Under certain conditions, it was possible for platinum to combine with a guanine through its N7 and O(C6) to form a chelate, but it was unstable as compared with [(NH3)2PtG2]2+. Although the intrastrand cross-linkage mechanism is favored by our calculation, the question of how such a mode of combination hampers replication of DNA remains to be solved.  相似文献   

3.
The reaction of cis-[Pt(15NH3)2(H2O) 2] 2+ (3) with N-acetylcysteine [H3accys] was investigated in aqueous solution. In this reaction, the ammine in the platinum complex formed was liberated. A mono-dentate sulfur-boundplatinum(II) product cis-[Pt(15NH3)2(H2O)(H2accys-S)]+ (7) and six-membered che-late ring complex cis-[Pt(15NH3)2 (Haccys-S,O)] (8) were formed in solution. The dinuclear sulfur-bridged complex 9, giving a broad peak in 15N NMR, was also observed, but only present in very tiny amounts. The mass spectrometry (ES-MS) was undertaken from this re action, and the product detected was only the dinuclear sulfur bridged platinum species and species related to it by ammine loss.  相似文献   

4.
The preparation and X‐ray crystal structure analysis of {trans‐[Pt(MeNH2)2(9‐MeG‐N1)2]} ? {3 K2[Pt(CN)4]} ? 6 H2O ( 3 a ) (with 9‐MeG being the anion of 9‐methylguanine, 9‐MeGH) are reported. The title compound was obtained by treating [Pt(dien)(9‐MeGH‐N7)]2+ ( 1 ; dien=diethylenetriamine) with trans‐[Pt(MeNH2)2(H2O)2]2+ at pH 9.6, 60 °C, and subsequent removal of the [(dien)PtII] entities by treatment with an excess amount of KCN, which converts the latter to [Pt(CN)4]2?. Cocrystallization of K2[Pt(CN)4] with trans‐[Pt(MeNH2)2(9‐MeG‐N1)2] is a consequence of the increase in basicity of the guanine ligand following its deprotonation and Pt coordination at N1. This increase in basicity is reflected in the pKa values of trans‐[Pt(MeNH2)2(9‐MeGH‐N1)2]2+ (4.4±0.1 and 3.3±0.4). The crystal structure of 3 a reveals rare (N7,O6 chelate) and unconventional (N2,C2,N3) binding patterns of K+ to the guaninato ligands. DFT calculations confirm that K+ binding to the sugar edge of guanine for a N1‐platinated guanine anion is a realistic option, thus ruling against a simple packing effect in the solid‐state structure of 3 a . The linkage isomer of 3 a , trans‐[Pt(MeNH2)2(9‐MeG‐N7)2] ( 6 a ) has likewise been isolated, and its acid–base properties determined. Compound 6 a is more basic than 3 a by more than 4 log units. Binding of metal entities to the N7 positions of 9‐MeG in 3 a has been studied in detail for [(NH3)3PtII], trans‐[(NH3)2PtII], and [(en)PdII] (en=ethylenediamine) by using 1H NMR spectroscopy. Without exception, binding of the second metal takes place at N7, but formation of a molecular guanine square with trans‐[(Me2NH2)PtII] cross‐linking N1 positions and trans‐[(NH3)2PtII] cross‐linking N7 positions could not be confirmed unambiguously, despite the fact that calculations are fully consistent with its existence.  相似文献   

5.
The structure of the compound [Pt(NH3)4][PtI4] was studied by X‐ray diffractometry at 293 K (r. t.) and at 173 K. The structure is isotypic with that of Magnus' green salt and is unchanged at low temperature except for a slight contraction of the unit cell [tetragonal, P4/mnc; a = b = 9.8024(10) and c = 6.9311(10)Å at r. t; a = b = 9.764(3), c = 6.875(3)Å at 173 K]. It consists of [Pt(NH3)4]2+ cations and [PtI4]2? anions in which the platinum atoms are tetracoordinated by four ammine N or four I atoms in square‐planar arrangements. At 173 K the intramolecular bond lengths are hardly modified, but the intermolecular stacking interaction Pt‐Pt is slightly shortened.  相似文献   

6.
《Analytical letters》2012,45(12):2182-2193
K[Pt(NH3)Cl3], a valuable precursor for the preparation of platinum complexes with cytostatic activity, e.g. satraplatin, picoplatin, LA-12 and cycloplatam, is currently prepared from cis-[Pt(NH3)2Cl2] or K2[PtCl4] and these are the usual impurities in the final product. A simple, selective and sensitive HPLC-UV analytical method for the determination of the purity of K[Pt(NH3)Cl3] and the quantification of the impurities has been developed and validated. The platinum complexes present in the final product were separated on a strong base ion exchange column by the gradient elution with detection at 213 nm. Intra-assay precisions for the platinum complexes respective to their ions ([PtCl4]2?, [Pt(NH3)Cl3]? and cis-[Pt(NH3)2Cl2]) were between 0.1 and 2.0% (relative standard deviation); intermediate precisions were between 1.4 and 2.0% and accuracies were between 98.6 and 101.4%. Limits of detection of [PtCl4]2?, [Pt(NH3)Cl3]? and cis-[Pt(NH3)2Cl2] were 6 µg · ml?1, 13 mg · ml?1 and 5 µg · ml?1 respectively, limits of quantification of [PtCl4]2?, [Pt(NH3)Cl3]? and cis-[Pt(NH3)2Cl2] were 51 µg · ml?1, 55 mg · ml?1 and 20 µg · ml?1 respectively.  相似文献   

7.
Metal coordination to N9‐substituted adenines, such as the model nucleobase 9‐methyladenine (9MeA), under neutral or weakly acidic pH conditions in water preferably occurs at N1 and/or N7. This leads, not only to mononuclear linkage isomers with N1 or N7 binding, but also to species that involve both N1 and N7 metal binding in the form of dinuclear or oligomeric species. Application of a trans‐(NH3)2PtII unit and restriction of metal coordination to the N1 and N7 sites and the size of the oligomer to four metal entities generates over 50 possible isomers, which display different feasible connectivities. Slowly interconverting rotamers are not included in this number. Based on 1H NMR spectroscopic analysis, a qualitative assessment of the spectroscopic features of N1,N7‐bridged species was attempted. By studying the solution behavior of selected isolated and structurally characterized compounds, such as trans‐[PtCl(9MeA‐N7)(NH3)2]ClO4 ? 2H2O or trans,trans‐[{PtCl(NH3)2}2(9MeA‐N1,N7)][ClO4]2 ? H2O, and also by application of a 9MeA complex with an (NH3)3PtII entity at N7, [Pt(9MeA‐N7)(NH3)3][NO3]2, which blocks further cross‐link formation at the N7 site, basic NMR spectroscopic signatures of N1,N7‐bridged PtII complexes were identified. Among others, the trinuclear complex trans‐[Pt(NH3)2{μ‐(N1‐9MeA‐N7)Pt(NH3)3}2][ClO4]6 ? 2H2O was crystallized and its rotational isomerism in aqueous solution was studied by NMR spectroscopy and DFT calculations. Interestingly, simultaneous PtII coordination to N1 and N7 acidifies the exocyclic amino group of the two 9MeA ligands sufficiently to permit replacement of one proton each by a bridging heterometal ion, HgII or CuII, under mild conditions in water.  相似文献   

8.
The pyrimidine (pym) nucleobase cytosine (H2C) forms cyclic ring structures (“metallacalix[n]arenes”) when treated with square‐planar cis‐a2MII entities (M=Pt, Pd; a=NH3 or a2=diamine). The number of possible linkage isomers for a given n and the number of possible rotamers can be substantially reduced if a “directed” approach is pursued. Hence, two cytosine ligands are bonded in a defined way to a kinetically robust platinum corner stone. In the accompanying paper (Part I: A. Khutia, P. J. Sanz Miguel, B. Lippert, Chem. Eur. J. 2010 , 17, DOI: 10.1002/chem.2010002722) we have demonstrated this principle by allowing cis‐[Pta2(H2C‐N3)2]2+ to react with (en)PdII to give cycles of (N1,N3 ? N3,N1?)x (with x=2 or 3; ? represents PtII and ? represents PdII). In an extension of this work we have now prepared cis‐[Pta2(HC‐N1)2] ( 1 ; HC=monoanion of cytosine) and treated it with (bpy)PdII (bpy=2,2′‐bipyridine) to give the Pt2Pd2 cycle cis‐[{Pt(NH3)2(N1‐HC‐N3)2Pd(bpy)}2](NO3)4 ? 13H2O ( 5 ) with the coordination sites of the metals inverted; hence, platinum is bonded to N1 and palladium is bonded to N3 sites. Again, not only the expected single linkage isomer is formed, but at the same time the solid‐state structure and 1H NMR spectroscopy reveal the preferential occurrence of a single rotamer (1,3‐alternate). The addition of (bpy)PdII to 5 led to the formation of Pd6Pt2 complex 6 in which the exocyclic N4H2 groups of the cytosine ligands have undergone deprotonation and chelate four more (bpy)PdII entities through the O2 and N4H sites. With a large excess of (bpy)PdII over 5 (4:1), cis‐(NH3)2PtII is eventually substituted by (bpy)PdII to give the Pd8 complex 7 . In both 6 and 7 stacks of three (bpy)PdII entities occur. The linkage isomer of 5 , cis‐[{Pt(NH3)2(N3‐HC‐N1)2Pd(bpy)}2](NO3)4 ? 9H2O ( 8 ), has been structurally characterized and the two complexes compared. The acid/base properties of cis‐[Pt(NH3)2(H2C‐N1)2] ( 1 ) have been determined and compared with those of the corresponding N3 isomer. The complexation of AgCl by 1 is reported.  相似文献   

9.
 This work is related to the interaction of water with two platinum(II) complexes, [Pt(NH3)4]2+ (denoted 1) and trans-[Pt(OH)2(NH3)2] (denoted 2). We have considered two approaches of a water molecule to complexes 1 and 2 along the z-axis normal to the platinum(II) coordination plane: approach I, with the water oxygen oriented towards Pt, and approach II, with one water hydrogen directed towards Pt. Calculations have been performed within a molecular mechanics method based upon the interaction potentials proposed earlier by Claverie et al. and subsequently adjusted to results obtained with symmetry – adapted perturbational theory as well as with supermolecule (up to second-order M?ller–Plesset, MP2) methods. We discuss some possible simplifications of the potentials mentioned. The results relative to the hydration of Pt complexes 1 and 2 following approach I or II are discussed and compared to recent (MP2) ab initio energy–distance curves that we have recently determined. The MP2 calculations have shown that besides exchange–repulsion contributions, which are very similar in all hydrated complexes, approach I is mainly governed by electrostatics, whereas for approach II both electrostatic and dispersion contributions are important. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 5 June 2000  相似文献   

10.
Reported herein is a study of the unusual 3′–3′ 1,4‐GG interstrand cross‐link (IXL) formation in duplex DNA by a series of polynuclear platinum anticancer complexes. To examine the effect of possible preassociation through charge and hydrogen‐bonding effects the closely related compounds [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464, 1 ), [{trans‐PtCl(NH3)2}2(μ‐NH2(CH2)6NH2)]2+ (BBR3005, 2 ), [{trans‐PtCl(NH3)2}2(μ‐H2N(CH2)3NH2(CH2)4)]3+ (BBR3571, 3 ) and [{trans‐PtCl(NH3)2}2{μ‐H2N(CH2)3‐N(COCF3)(CH2)4}]2+ (BBR3571‐COCF3, 4 ) were studied. Two different molecular biology approaches were used to investigate the effect of DNA template upon IXL formation in synthetic 20‐base‐pair duplexes. In the “hybridisation directed” method the monofunctionally adducted top strands were hybridised with their complementary 5′‐end labelled strands; after 24 h the efficiency of interstrand cross‐linking in the 5′–5′ direction was slightly higher than in the 3′–3′ direction. The second method involved “postsynthetic modification” of the intact duplex; significantly less cross‐linking was observed, but again a slight preference for the 5′–5′ duplex was present. 2D [1H, 15N] HSQC NMR spectroscopy studies of the reaction of [15N]‐ 1 with the sequence 5′‐d{TATACATGTATA}2 allowed direct comparison of the stepwise formation of the 3′–3′ IXL with the previously studied 5′–5′ IXL on the analogous sequence 5′‐d(ATATGTACATAT)2. Whereas the preassociation and aquation steps were similar, differences were evident at the monofunctional binding step. The reaction did not yield a single distinct 3′–3′ 1,4‐GG IXL, but numerous cross‐linked adducts formed. Similar results were found for the reaction with the dinuclear [15N]‐ 2 . Molecular dynamics simulations for the 3′–3′ IXLs formed by both 1 and 2 showed a highly distorted structure with evident fraying of the end base pairs and considerable widening of the minor groove.  相似文献   

11.
顺铂化合物与鸟嘌呤异构体相互作用的理论研究   总被引:1,自引:0,他引:1  
章志强  周立新  和芹 《中国化学》2005,23(10):1327-1332
The influence of binding of cisplatin adducts on tautomeric equilibrium of guanine was investigated using quantum chemical method. The monoaqua adduct [Pt(NH3)2Cl(H2O)]^+ and the diaqua adduct [Pt(NHa)2(H2O)2]^2+ were chosen for coordination to the N(7) site of guanine tautomers. The results demonstrate that the platinum adducts influence moderately on tautomeric equilibrium, but do not change the relative stability of tautomers whether in gas phase or in aqueous solution. The keto form having H atom at N(1) and N(9) was always the predominant structure when cisplatin adducts were bound to guanine. However, other forms could coexist in water. Meanwhile, our calculations suggest that the tautomeric equilibrium should be via the same intermediate.  相似文献   

12.
195Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3)n(OH)6 ? n]2?, [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 1–6), and [Pt(NO3)6 ? n ? m(OH)m(OH2)n]?2 + n ? m formed by dissolution of platinic acid, H2[Pt(OH)6], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge‐including atomic orbitals (GIAO)‐PBE0/segmented all‐electron relativistically contracted–zeroth‐order regular approximation (SARC–ZORA)(Pt) ∪ 6–31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second‐order polynomial plots of δcalcd(195Pt) versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ 195Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σiso 195Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ 195Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter‐ion effects on the 195Pt NMR chemical shifts of the anionic [Pt(NO3)n(OH)6 ? n]2? and cationic [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 0–3) complexes we calculated the 195Pt NMR chemical shifts of the neutral (PyH)2[Pt(NO3)n(OH)6 ? n] (n = 1–6; PyH = pyridinium cation, C5H5NH+) and [Pt(NO3)n(H2O)6 ? n](NO3)4 ? n (n = 0–3) complexes. Counter‐anion effects are very important for the accurate prediction of the 195Pt NMR chemical shifts of the cationic [Pt(NO3)n(OH2)6 ? n]4 ? n complexes, while counter‐cation effects are less important for the anionic [Pt(NO3)n(OH)6 ? n]2? complexes. The simple computational protocol is easily implemented even by synthetic chemists in platinum coordination chemistry that dispose limited software availability, or locally existing routines and knowhow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In view of building a workable molecular model of tetraliganded zinc at the active site of carbonic anhydrase, an ab initio SCF study using pseudopotentials is performed on Zn2+(OH2)n from n = 2 to 6, Zn2+(NH3)n?1 (OH2) for n = 2 and 4, Zn2+(NH3)2 (imidazole) (OH2), and their ionized species involving OH? or imidazolate, considering in particular the evolution of the properties of the ligands and of the bound cation upon increasing n and upon replacement of one ligand by another. (Comparison of NH3 and imidazole binding was made in a full SCF calculation.) The results obtained in the tetraliganded complex confirm that zinc binding facilitates water deprotonation more than imidazole deprotonation, so as to reverse the order of their intrinsic ease of ionization. A study of the approach of CO2 toward the active site is made in an electrostatic approximation using as models the most representative of the computed four-ligand complexes.  相似文献   

14.
The electronic structures of amidine CH3C(NH)NH2 and its complex [Pt(NH3)5{CH3C(NH)NH2}]4+ are studied by the semiempirical CNDO method and by the ab initio Hartree-Fock-Roothaan method using the effective core potential for the platinum atom by the GAUSSIAN-92 program. It is shown that in free amidine the protonation of the NH group is energetically more profitable than the protonation of the NH2 group. Formation of the amidine-platinum(IV) ion complex is accompanied by a considerable redistribution of electron density in amidine atoms and bonds. In the above complex, the amidine NH2 group exhibits enhanced protophilic properties. St. Petersburg State Technological Institute (Technical University). Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 2, pp. 220–224, March–April, 1996. Translated by I. Izvekova  相似文献   

15.
The binding of Zn2+ to the purine and pyrimidine bases of the nucleic acids was studied by SCFab initio (pseudopotential) computations. The order of affinity of the bases is guanine cytosine > adenine uracil. Many geometrical features of the binding are similar to those observed previously in the interaction of the bases with Na+. A new feature is the possibility of chelation by Zn2+ between N7 and the rotated NH2 group of adenine.  相似文献   

16.
Mono(nucleobase) complexes of the general composition cis‐[PtCl2(NH3)L] with L=1‐methylcytosine, 1‐MeC ( 1 a ) and L=1‐ethyl‐5‐methylcytosine, as well as trans‐[PtX2(NH3)(1‐MeC)] with X=I ( 5 a ) and X=Br ( 5 b ) have been isolated and were characterized by X‐ray crystallography. The Pt coordination occurs through the N3 atom of the cytosine in all cases. The diaqua complexes of compounds 1 a and 5 a , cis‐[Pt(H2O)2(NH3)(1‐MeC)]2+ and trans‐[Pt(H2O)2(NH3)(1‐MeC)]2+, display a rich chemistry in aqueous solution, which is dominated by extensive condensation reactions leading to μ‐OH‐ and μ‐(1‐MeC?N3,N4)‐bridged species and ready oxidation of Pt to mixed‐valence state complexes as well as diplatinum(III) compounds, one of which was characterized by X‐ray crystallography: h,t‐[{Pt(NH3)2(OH)(1‐MeC?N3,N4)}2](NO3)2 ? 2 [NH4](NO3) ? 2 H2O. A combination of 1H NMR spectroscopy and ESI mass spectrometry was applied to identify some of the various species present in solution and the gas phase, respectively. As it turned out, mass spectrometry did not permit an unambiguous assignment of the structures of +1 cations due to the possibilities of realizing multiple bridging patterns in isomeric species, the occurrence of different tautomers, and uncertainties regarding the Pt oxidation states. Additionally, compound 1 a was found to have selective and moderate antiproliferative activity for a human cervix cancer line (SISO) compared to six other human cancer cell lines.  相似文献   

17.
The conversion of the 1 : 1-complex of Cisplatin with 1-methyluracil (1MeUH), cis-[Pt(NH3)2(1MeU-N3)Cl] ( 1 a ) to the aqua species cis-[Pt(NH3)2(1MeU-N3)(OH2)]+ ( 1 b ), achieved by reaction of 1 a with AgNO3 in water, affords a mixture of compounds, the composition of which strongly depends on sample history. The complexity stems from variations in condensation patterns and partial loss of NH3 ligands. In dilute aqueous solution, 1 a , and dinuclear compounds cis-[(NH3)2(1MeU-N3)Pt(μ-OH)Pt(1MeU-N3)(NH3)2]+( 3 ) as well as head-tail cis-[Pt2(NH3)4(μ-1MeU-N3,O4)2]2+ ( 4 ) represent the major components. In addition, there are numerous other species present in minor quantities, which differ in metal nuclearity, stoichiometry, stereoisomerism, and Pt oxidation state, as revealed by a combination of 1H NMR and ESI-MS spectroscopy. Their composition appears not to be the consequence of a unique and repeating coordination pattern of the 1MeU ligand in oligomers but rather the coexistence of distinctly different condensation patterns, which include μ-OH, μ-1MeU, and μ-NH2 bridging and combinations thereof. Consequently, the products obtained should, in total, be defined as a heterogeneous mixture rather than a mixture of oligomers of different sizes. In addition, a N2 complex, [Pt(NH3)(1MeU)(N2)]+ appears to be formed in gas phase during the ESI-MS experiment. In the presence of Na+ ions, multimers n of 1 a with n=2, 3, 4 are formed that represent analogues of non-metalated uracil quartets found in tetrastranded RNA.  相似文献   

18.
Ammonolysis of Halogeno Complexes of Tetravalent Platinum Reactions of liquid ammonia and ammonium hexahalogenoplatinates(IV) at ?40°C yield mixtures of halogenoammine complexes [Pt(NH3)6?nXn]X4?n (X = Cl, Br, I; n = 3, 2, 1, 0). Hexaammine platinum(IV) salts, [Pt(NH3)6]X4, may be isolated as main product only after several weeks of reaction. Interactions at room temperature of liquid ammonia and hexachloro or hexabromo complexes produce quantitatively the novel dinuclear di-m?-amido-bis[tetraammineplatinum(IV)] complex, [(H3N)4Pt(NH2)2Pt(NH3)4]X6. By interaction of gaseous or liquid ammonia and subsequent addition of potassium amide solution in excess potassium hexaamido platinate(IV), K2[Pt(NH2)6], is formed in good yield.  相似文献   

19.
For the first time, direct oxidation of elemental platinum by a mineral acid to its tetravalent state was observed in course of the reaction of platinum with oleum (65 % SO3) in the presence of barium carbonate. The reaction has been carried out in torch‐sealed glass ampoules at 160 °C and gave yellow single crystals of Ba[Pt(S2O7)3](H2SO4)0.5(H2S2O7)0.5 (triclinic, P$\bar 1$ , Z=2, a=992.05(2), b=1069.07(3), c=1114.22(3) pm, α=69.49(7), β=72.96(2), γ=72.93(1)°, V=1033.95(5) Å3). The structure of Ba[Pt(S2O7)3](H2SO4)0.5(H2S2O7)0.5 exhibits the unique tris‐(disulfato)‐platinate anion [Pt(S2O7)3]2? with three chelating disulfate groups coordinated to the platinum atom. Charge balance is achieved by the Ba2+ ions, which are coordinated by (S2O7)2? groups from the platinate complex and by disordered sulfuric acids and disulfuric acid molecules. Thermal decomposition of the bulk material revealed elemental platinum and barium sulfate as decomposition residual.  相似文献   

20.
The most stable hydrolysis products of cis-[Pt(NH3)2(H2O)2]2 + were revealed by means of DFT quantum-chemical calculations of this complex and its deprotonated forms with full geometry optimization. The resulting force fields and normal mode vibrations were used to calculate thermodynamic characteristics for possible hydrolysis stages and equilibrium constants for proton-transfer processes in the gas phase and in aqueous solutions. The hydroxo-bridged dimers [Pt(NH3)2(-OH)]2 2 + with short Pt+++Pt distances are the hydrolysis products of platinum(II) cis-diaquadiamminates in the aqueous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号