首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this overview of selected aspects of the black hole attractor mechanism, after introducing the necessary foundations, we examine the relationship between two ways to describe the attractor phenomenon in four‐dimensional N = 2 supergravity: the entropy function and the black hole potential. We also exemplify their practical application to finding solutions to the attractor equations for a conifold prepotential. Next we describe an extension of the original definition of the entropy function to a class of rotating black holes in five‐dimensional N = 2 supergravity based on cubic polynomials, exploiting a connection between four‐ and five‐dimensional black holes. This link allows further the derivation of five‐dimensional first‐order differential flow equations governing the profile of the fields from infinity to the event horizon and construction of non‐supersymmetric interpolating solutions in four dimensions by dimensional reduction. Finally, since four‐dimensional extremal black holes in N = 2 supergravity can be viewed as certain two‐dimensional string compactifications with fluxes, we discuss implications of the conifold example in the context of the entropic principle, which postulates as a probability measure on the space of these string compactifications the exponentiated entropy of the corresponding black holes.  相似文献   

2.
We study the number of flux vacua for type IIB string theory on an orientifold of the Calabi‐Yau expressed as a hypersurface in WCP 4[1,1,2,2,6] by evaluating a suitable integral over the complex‐structure moduli space as per the conjecture of Douglas and Ashok. We show that away from the singular conifold locus, one gets a power law, and that the (neighborhood) of the conifold locus indeed acts as an attractor in the (complex structure) moduli space. In the process, we evaluate the periods near the conifold locus. We also study (non)supersymmetric solutions near the conifold locus, and show that supersymmetric solutions near the conifold locus do not support fluxes.  相似文献   

3.
We give a detailed derivation of a supersymmetric configuration of wrapped D5 branes on a two-cycle of a warped resolved conifold. Our analysis reveals that the resolved conifold should support a non-Kähler metric with an SU(3) structure. We use this as a starting point of the geometric transition in type IIB theory. A mirror, and a subsequent flop transition using an intermediate M-theory configuration with a G2 structure, gives rise to the complete IR geometric transition in type IIA theory. A further mirror transformation gives the type IIB gravity dual of the IR gauge theory on the wrapped D5 branes. Expectedly non-Kähler deformations of the resolved and the deformed conifolds appear as the gravity duals of the confining gauge theories in type IIA and type IIB theories respectively, although in more generic cases these manifolds could also be non-geometric. In the local limit we reproduce precisely the scenarios presented in our earlier works. Our present work should therefore be viewed as providing a supergravity proof of geometric transitions in the full global scenarios in type II theories.  相似文献   

4.
We study ‐dimensional half‐maximal flux backgrounds using exceptional field theory. We define the relevant generalised structures and also find the integrability conditions which give warped half‐maximal MinkowskiD and AdSD vacua. We then show how to obtain consistent truncations of type II / 11‐dimensional SUGRA which break half the supersymmetry. Such truncations can be defined on backgrounds admitting exceptional generalised structures, where , and N is the number of vector multiplets obtained in the lower‐dimensional theory. Our procedure yields the most general embedding tensors satisfying the linear constraint of half‐maximal gauged SUGRA. We use this to prove that all half‐maximal warped AdSD and MinkowskiD vacua of type II / 11‐dimensional SUGRA admit a consistent truncation keeping only the gravitational supermultiplet. We also show to obtain heterotic double field theory from exceptional field theory and comment on the M‐theory / heterotic duality. In five dimensions, we find a new SO(5, N ) double field theory with a ‐dimensional extended space. Its section condition has one solution corresponding to 10‐dimensional supergravity and another yielding six‐dimensional SUGRA.  相似文献   

5.
6.
We discuss the possible realisation in string/M theory of the recently discovered family of four‐dimensional maximal gauged supergravities, and of an analogous family of seven‐dimensional half‐maximal gauged supergravities. We first prove a no‐go theorem that neither class of gaugings can be realised via a compactification that is locally described by ten‐ or eleven‐dimensional supergravity. In the language of Double Field Theory and its M theory analogue, this implies that the section condition must be violated. Introducing the minimal number of additional coordinates possible, we then show that the standard S 3 and S 7 compactifications of ten‐ and eleven‐dimensional supergravity admit a new class of section‐violating generalised frames with a generalised Lie derivative algebra that reproduces the embedding tensor of the and gaugings respectively. The physical meaning, if any, of these constructions is unclear. They highlight a number of the issues that arise when attempting to apply the formalism of Double Field Theory to non‐toroidal backgrounds. Using a naive brane charge quantisation to determine the periodicities of the additional coordinates restricts the gaugings to an infinite discrete set and excludes all the gaugings other than the standard one.  相似文献   

7.
8.
We complete the study [1] of smooth ℤ3‐quotients of complete intersection Calabi‐Yau threefolds by discussing the six new manifolds that admit free ℤ3 actions that were discovered in [2]. These manifolds were missed in [1] and complete the web of smooth ℤ3‐quotients in a nice way. We discuss the transitions between these manifolds and include also the other manifolds of the web. This leads to the conclusion that the web of ℤ3‐free quotients of complete intersection Calabi‐Yau threefolds is connected by conifold transitions.  相似文献   

9.
The generalization of QCD motivated classical SU(2) Yang-Mills theory coupled to a scalar field is discussed. The massive scalar field, corresponding to the scalar glueball, provides a confining potential for static, point-like, external sources. In the case of a massless scalar field screening solutions are found. However, there is a confining sector as well. Both, massive and massless confining solutions, are compared with phenomenological potentials. The case of a non-dynam ical permittivity is also discussed. Received: 15 November 2002 / Revised version: 31 January 2003 / Published online: 7 March 2003 RID="a" ID="a" e-mail: mslus@phys.ualberta.ca RID="b" ID="b" e-mail: wereszcz@alphas.if.uj.edu.pl  相似文献   

10.
In this paper we address the general problem of including inflationary models exhibiting Starobinsky‐like potentials into (symmetric) supergravities. This is done by gauging suitable abelian isometries of the hypermultiplet sector and then truncating the resulting theory to a single scalar field. By using the characteristic properties of the global symmetry groups of the supergravities we are able to make a general statement on the possible α‐attractor models which can obtained upon truncation. We find that in symmetric models group theoretical constraints restrict the allowed values of the parameter α to be . This confirms and generalizes results recently obtained in the literature. Our analysis heavily relies on the mathematical structure of symmetric supergravities, in particular on the so called c‐map connection between Quaternionic Kähler manifolds starting from Special Kähler ones. A general statement on the possible consistent truncations of the gauged models, leading to Starobinsky‐like potentials, requires the essential help of Tits Satake universality classes. The paper is mathematically self‐contained and aims at presenting the involved mathematical structures to a public not only of physicists but also of mathematicians. To this end the main mathematical structures and the general gauging procedure of supergravities is reviewed in some detail.  相似文献   

11.
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure R2 theory is indeed ghost free. Then we point out that for flat backgrounds the pure R2 theory propagates only a scalar massless mode and no spin‐two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti‐de Sitter, or by changing the long‐distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string‐ or M‐theory. We demonstrate that string theory on non‐compact manifolds, like a line bundle over , may indeed lead to gravity dynamics determined by a higher curvature action.  相似文献   

12.
The kinetics of the gas‐phase elimination of α‐methyl‐trans‐cinamaldehyde catalyzed by HCl in the temperature range of 399.0–438.7 °C, and the pressure range of 38–165 Torr is a homogeneous, molecular, pseudo first‐order process and undergoing a parallel reaction to produce via (A) α‐methylstyrene and CO gas and via (B) β‐methylstyrene and CO gas. The decomposition of substrate E‐2‐methyl‐2‐pentenal was performed in the temperature range of 370.0–410.0 °C and the pressure range of 44–150 Torr also undergoing a molecular, pseudo first‐order reaction gives E‐2‐pentene and CO gas. These reactions were carried out in a static system seasoned reactions vessels and in the presence of toluene free radical inhibitor. The rate coefficients are given by the following Arrhenius expressions:
  • Products formation from α‐methyl‐trans‐cinamaldehyde
  • α‐methylstyrene :
  • β‐methylstyrene :
  • Products formation from E‐2‐methyl‐2‐pentenal
  • E‐2‐pentene :
The kinetic and thermodynamic parameters for the thermal decomposition of α‐methyl‐trans‐cinamaldehyde suggest that via (A) proceeds through a bicyclic transition state type of mechanism to yield α‐methylstyrene and carbon monoxide, whereas via (B) through a five‐membered cyclic transition state to give β‐methylstyrene and carbon monoxide. However, the elimination of E‐2‐methyl‐2‐pentenal occurs by way of a concerted cyclic five‐membered transition state mechanism producing E‐2‐pentene and carbon monoxide. The present results support that uncatalyzed α‐β‐unsaturated aldehydes decarbonylate through a three‐membered cyclic transition state type of mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
We look for possible nonsupersymmetric black hole attractor solutions for type II compactification on (the mirror of) CY3(2,128) expressed as a degree‐12 hypersurface in WCP 4[1,1,2,2,6]. In the process, (a) for points away from the conifold locus, we show that the existence of a non‐supersymmetric attractor along with a consistent choice of fluxes and extremum values of the complex structure moduli, could be connected to the existence of an elliptic curve fibered over C 8 which may also be “arithmetic” (in some cases, it is possible to interpret the extremization conditions for the black‐hole superpotential as an endomorphism involving complex multiplication of an arithmetic elliptic curve), and (b) for points near the conifold locus, we show that existence of non‐supersymmetric black‐hole attractors corresponds to a version of A1‐singularity in the space Image( Z 6→ R 2/ Z 2 (↪ R 3)) fibered over the complex structure moduli space. The (derivatives of the) effective black hole potential can be thought of as a real (integer) projection in a suitable coordinate patch of the Veronese map: CP 5→ CP 20, fibered over the complex structure moduli space. We also discuss application of Kallosh's attractor equations (which are equivalent to the extremization of the effective black‐hole potential) for nonsupersymmetric attractors and show that (a) for points away from the conifold locus, the attractor equations demand that the attractor solutions be independent of one of the two complex structure moduli, and (b) for points near the conifold locus, the attractor equations imply switching off of one of the six components of the fluxes. Both these features are more obvious using the attractor equations than the extremization of the black hole potential.  相似文献   

14.
A possible scenario of the Lorentz symmetry violation is discussed based on the arising of geometric quantum phases yielded by the effects of the Lorentz symmetry violation in the CPT‐even gauge sector of Standard Model Extension. Analogues of the Anandan quantum phase and the scalar Aharonov‐Bohm effect for a neutral particle [J. Anandan, Phys. Lett. A 138 , 347 (1989)] are obtained from the parity‐odd sector of the tensor . Moreover, we build quantum holonomies associated with the analogue of the Anandan quantum phase and discuss a possible analogy with the geometric quantum computation [A. Ekert et al., J. Mod. Opt. 47 , 2501 (2000)].

  相似文献   


15.
Taking as a starting point a Lorentz non-invariant abelian Higgs model defined in 1 + 3 dimensions, we carry out its dimensional reduction to D = 1 + 2, obtaining a new planar model composed by a Maxwell-Chern-Simons-Proca gauge sector, a massive scalar sector, and a mixing term (involving the fixed background ) that imposes the Lorentz violation to the reduced model. The propagators of the scalar and massive gauge field are evaluated and the corresponding dispersion relations determined. Based on the poles of the propagators, a causality and unitarity analysis is carried out at tree level. We then show that the model is totally causal, stable and unitary.Received: 2 July 2004, Revised: 21 September 2004, Published online: 1 December 2004  相似文献   

16.
Magical supergravities are a very special class of supergravity theories whose symmetries and matter content in various dimensions correspond to symmetries and underlying algebraic structures of the remarkable geometries of the Magic Square of Freudenthal, Rozenfeld and Tits. These symmetry groups include the exceptional groups and some of their special subgroups. In this paper, we study the general gaugings of these theories in six dimensions which lead to new couplings between vector and tensor fields. We show that in the absence of hypermultiplet couplings the gauge group is uniquely determined by a maximal set of commuting translations within the isometry group SO(nT,1)SO(nT,1) of the tensor multiplet sector. Moreover, we find that in general the gauge algebra allows for central charges that may have nontrivial action on the hypermultiplet scalars. We determine the new minimal couplings, Yukawa couplings and the scalar potential.  相似文献   

17.
We review the non-anticommutative Q-deformations of = (1, 1) supersymmetric theories in four-dimensional Euclidean harmonic superspace. These deformations preserve chirality and harmonic Grassmann analyticity. The associated field theories arise as a low-energy limit of string theory in specific backgrounds and generalize the Moyal-deformed supersymmetric field theories. A characteristic feature of the Q-deformed theories is the half-breaking of supersymmetry in the chiral sector of the Euclidean superspace. Our main focus is on the chiral singlet Q-deformation, which is distinguished by preserving the SO(4) ∼ Spin(4) “Lorentz” symmetry and the SU(2) R-symmetry. We present the superfield and component structures of the deformed = (1, 0) supersymmetric gauge theory as well as of hypermultiplets coupled to a gauge superfield: invariant actions, deformed transformation rules, and so on. We discuss quantum aspects of these models and prove their renormalizability in the Abelian case. For the charged hypermultiplet in an Abelian gauge superfield background we construct the deformed holomorphic effective action. The text was submitted by the authors in English.  相似文献   

18.
We discuss recent progress in describing a certain non-Abelian vortex string as a critical superstring on a conifold and clarify some subtle points. This particular solitonic vortex is supported in four-dimensional supersymmetric QCD with the gauge group, N f = 4 quark flavors and the Fayet–Iliopoulos term. Under certain conditions, the non-Abelian vortex can become infinitely thin and can be interpreted as a critical ten-dimensional superstring. In addition to four translational moduli, the non-Abelian vortex under consideration carries six orientational and size moduli. The vortex moduli dynamics are described by a twodimensional sigma model with the target space ?4 × Y 6, where Y 6 is a non-compact Calabi–Yau conifold. The closed string states that emerge in four dimensions (4D) are identified with hadrons of 4D bulk N= 2 QCD. It turns out that most of the states arising from the ten-dimensional graviton spectrum are non-dynamical in 4D. A single dynamical massless hypermultiplet associated with the deformation of the complex structure of the conifold is found. It is interpreted as a monopole–monopole baryon of the 4D theory (at strong coupling).  相似文献   

19.
We present a pedagogical discussion of the emergence of gauged supergravities from M‐theory. First, a review of maximal supergravity and its global symmetries and supersymmetric solutions is given. Next, different procedures of dimensional reduction are explained: reductions over a torus, a group manifold and a coset manifold and reductions with a twist. Emphasis is placed on the consistency of the truncations, the resulting gaugings and the possibility to generate field equations without an action. Using these techniques, we construct a number of gauged maximal supergravities in diverse dimensions with a string or M‐theory origin. One class consists of the CSO gaugings, which comprise the analytic continuations and group contractions of SO(n) gaugings. We construct the corresponding half‐supersymmetric domain walls and discuss their uplift to D‐ and M‐brane distributions. Furthermore, a number of gauged maximal supergravities are constructed that do not have an action.  相似文献   

20.
As the silicon industry continues to push the limits of device dimensions, tools such as Raman spectroscopy are ideal to analyze and characterize the doped silicon channels. The effect of inter‐valence band transitions on the zone center optical phonon in heavily p‐type doped silicon is studied by Raman spectroscopy for a wide range of excitation wavelengths extending from the red (632.8 nm) into the ultra‐violet (325 nm). The asymmetry in the one‐phonon Raman lineshape is attributed to a Fano interference involving the overlap of a continuum of electronic excitations with a discrete phonon state. We identify a transition above and below the one‐dimensional critical point (E = 3.4 eV) in the electronic excitation spectrum of silicon. The relationship between the anisotropic silicon band structure and the penetration depth is discussed in the context of possible device applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号