首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
金玉红  王莉  尚玉明  高剑  李建军  何向明 《化学通报》2014,77(11):1045-1053
超级电容器具有功率密度高、充放电速度快、循环寿命长和维护成本低的特点,在电动车动力电池领域具有潜在的应用前景。超级电容器性能主要由其电极材料所决定。聚苯胺易合成、理论比容量高,而且导电性能优异,作为超级电容器电极材料有很高的应用价值。但是,在长期使用过程中,它的体积容易发生膨胀或收缩,循环寿命差。为了解决这个问题,将聚苯胺与石墨烯复合可以扬长避短,充分利用两者之间的协同效应,赋予复合材料优异电化学电容性能。本文综述了超级电容器用石墨烯-聚苯胺复合材料的制备方法,包括原位聚合法、油水界面合成法、电化学合成法、层层自组装法等;提出了三维网状石墨烯和对石墨烯-聚苯胺复合材料进行改性来提高复合材料的电化学电容性能的思路。  相似文献   

2.
本研究以低成本、易规模化的亲水性石墨烯/氧化石墨烯为前驱体,通过原位聚合的方法制备石墨烯/氧化石墨烯/聚苯胺复合材料,经过化学还原后制备得到石墨烯/还原氧化石墨烯/聚苯胺复合材料.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和傅里叶红外变化光谱仪(FT-IR)对制备的材料进行了结构和形貌的表征.运用循环伏安法...  相似文献   

3.
石墨烯/聚苯胺复合材料由于其优异的电学、热学、电化学性能和机械性能等特点,吸引了研究者们的广泛关注。本文对近几年来石墨烯/聚苯胺复合材料的发展状况进行了简单介绍,首先总结了原位聚合法、界面聚合法、自组装法、溶液共混法等不同制备方法对石墨烯/聚苯胺复合材料结构和性能的影响。由于石墨烯/聚苯胺复合材料结合了石墨烯和聚苯胺两者的优点,展现出更加优异的性能,因此本文还对其在超级电容器、传感器、燃料电池、太阳能电池等方面的应用进行了详细介绍。  相似文献   

4.
超级电容器用石墨烯/金属氧化物复合材料   总被引:2,自引:0,他引:2  
超级电容器是一种具有高功率密度和长循环寿命的新型储能装置,碳材料、金属氧化物和导电聚合物是常见的三种超级电容器电极材料。在石墨烯/金属氧化物复合材料中,石墨烯和金属氧化物可以发挥各自的优点,结合石墨烯优异的循环稳定性能和金属氧化物的高容量特性,纳米复合材料的综合性能可以得到很大地提升。因此,石墨烯/金属氧化物复合物的研究是超级电容器领域的热点研究方向之一。本文以金属氧化物的种类、石墨烯的结构和复合物的制备方法为线索,综述了国内外应用于超级电容器方面的石墨烯/金属氧化物复合材料的研究进展,归纳总结出与石墨烯复合最优的金属氧化物类型和制备方法,并进一步对该类复合材料的发展趋势进行了展望。  相似文献   

5.
聚苯胺理论比容量高、易合成,是一种理想的电极材料,但其循环寿命差,而石墨烯具有高的理论比表面积,将二者复合,充分利用两者之间的协同效应,能够使复合材料具有优异的电化学电容性能。本文回顾了近几年石墨烯-聚苯胺纳米复合材料在超级电容器中的最新研究结果及其制备方法,并对如何优化电极的结构与性能进行讨论,同时介绍了石墨烯-聚苯胺类电极材料在有机超级电容器中的应用进展,最后对石墨烯-聚苯胺复合材料的前景进行了展望。超级电容器用石墨烯-聚苯胺纳米复合材料的发展取决于其合理的微观结构设计,构建理想的三维多孔结构以避免聚苯胺的膨胀与收缩现象是研究的方向之一,此外,在改善石墨烯和聚苯胺间弱的界面相互作用的同时寻求石墨烯性能与功能化的平衡仍是难点,机械性能优异的聚苯胺纳米复合材料对于柔性全固态超级电容器的研究也会起到关键作用。  相似文献   

6.
石墨烯-聚苯胺杂化超级电容器电极材料   总被引:1,自引:0,他引:1  
聚苯胺是一类具有超高比电容的导电高分子材料, 利用其与石墨烯的协同效应, 改善各自的固有缺点, 可以制得高性能的超级电容器. 本文综述了石墨烯-聚苯胺杂化电极材料的制备方法和石墨烯表面性质对电极材料电化学性能的影响, 讨论了优化杂化电极的结构与性能.  相似文献   

7.
采用简单的超声自组装法制备了石墨烯/三氧化钼纳米带复合材料。最终产物的组成和结构采用多种不同的手段进行了表征,包括扫描电镜、透射电镜、X射线衍射、拉曼光谱以及热分析等。该复合材料可以用作超级电容器电极材料。电化学实验结果表明石墨烯/三氧化钼纳米带复合材料比电容可达到285.5 F·g-1,且在电流密度为1 A·g-1时经过1 000次循环后其电容值能保持初始值的99.5%.  相似文献   

8.
采用简单的超声自组装法制备了石墨烯/三氧化钼纳米带复合材料。最终产物的组成和结构采用多种不同的手段进行了表征,包括扫描电镜、透射电镜、X射线衍射、拉曼光谱以及热分析等。该复合材料可以用作超级电容器电极材料。电化学实验结果表明石墨烯/三氧化钼纳米带复合材料比电容可达到285.5 F·g-1,且在电流密度为1 A·g-1时经过1 000次循环后其电容值能保持初始值的99.5%.  相似文献   

9.
以高浓度氧化石墨烯(GO)溶液作为反应前驱体,纳米纤维素(NC)作为物理间隔物和电解液储存器,通过简单的一步水热法制备了纳米纤维素/还原氧化石墨烯(NC/rGO)复合材料,并探究了其作为超级电容器电极材料的潜力。结果如下:NC添加量为1 mL所制备的NC/rGO-1具有最佳电化学性能。基于NC/rGO-1的无黏合剂对称型超级电容器在0.3 A·g-1的电流密度下显示出了 269.33 F·g-1和 350.13 F·cm-3的高质量和体积比电容,并在 10.0 A·g-1时仍能达到 215.88 F·g-1和 280.62 F·cm-3(其初始值的 80.15%)。组装器件还显示出了较高的质量和体积能量密度(9.3 Wh·kg-1和 12.13 Wh·L-1)和出色的循环性能(10 A·g-1下10 000次循环后其初始比电容仅减少6.02%)。  相似文献   

10.
以高浓度氧化石墨烯(GO)溶液作为反应前驱体,纳米纤维素(NC)作为物理间隔物和电解液储存器,通过简单的一步水热法制备了纳米纤维素/还原氧化石墨烯(NC/rGO)复合材料,并探究了其作为超级电容器电极材料的潜力。结果如下:NC添加量为1 mL所制备的NC/rGO-1具有最佳电化学性能。基于NC/rGO-1的无黏合剂对称型超级电容器在0.3 A·g-1的电流密度下显示出了269.33 F·g-1和350.13 F·cm-3的高质量和体积比电容,并在10.0 A·g-1时仍能达到215.88 F·g-1和280.62 F·cm-3(其初始值的80.15%)。组装器件还显示出了较高的质量和体积能量密度(9.3 Wh·kg-1和12.13 Wh·L-1)和出色的循环性能(10 A·g-1下10 000次循环后其初始比电容仅减少6.02%)。  相似文献   

11.
石墨烯/聚苯胺复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以苯胺和氧化石墨烯(GO)为原料, 采用电化学方法制备了石墨烯/聚苯胺(GP)复合材料. 利用X射线衍射(XRD)、扫描电镜(SEM)、拉曼(Raman)光谱、X射线光电子能谱分析(XPS)对其结构、微观形貌进行了表征,并对复合材料电化学性能进行了测试. 结果表明, 复合材料保持了石墨烯的基本形貌, 聚苯胺颗粒均匀地分散在石墨烯表面, 复合材料在500 mA·g-1的电流密度下比电容达到352 F·g-1, 1000 mA·g-1下比电容为315 F·g-1, 经过1000 次的充放电循环后容量保持率达到90%, 远大于石墨烯和聚苯胺单体的比电容. 复合材料放电效率高, 电解质离子易于在电极中扩散和迁移.  相似文献   

12.
Films of polypyrrole/graphene on titanium mesh were prepared by electrochemical reduction of the fresh dried foam films of graphene oxide followed by an electrochemical polymerization of pyrrole. The as-obtained composite had highly surface area, conductivity, and could be used as the electrode for supercapacitors, especially directly used as the active materials in free of binders while the Ti mesh worked as the collector. Plenty of polypyrrole nanoparticles formed on the surface of reduced graphene film, and some fiber-like aggregates could be formed during the polymerization, which worked as the material for pseudo-capacitance. The specific capacitance of the supercapacitor reached 400 F/g and showed high stability with retaining capacitance of 82% after 5000 cycles, indicating that the nanocomposite is a suitable active material for supercapacitors.  相似文献   

13.
通过真空抽滤的方法制备碳纳米管纸,并对其进行循环伏安电化学氧化处理.以该电化学氧化处理的碳纳米管(CV-CNT)纸为基体,采用电化学聚合沉积聚苯胺(PANI),随后吸附石墨烯(GR),制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯(CV-CNT/PANI/GR)复合纳米碳纸.该结构外层为GR,内层由PANI包裹的CNT形成网络骨架,充分发挥三者各自优势构建柔性电极材料.用场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)、拉曼光谱对其形貌与结构进行表征,并测试其电化学性能.研究发现:PANI呈纳米晶须状,并均匀包裹在CV-CNT表面;该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能.电流密度为0.5A·g-1时,比电容可达415F·g-1;20A·g-1时仍能保持106F·g-1的比电容.由于GR的保护作用,1000次循环之后较CV-CNT/PANI保持更高的有效比电容.该CV-CNT/PANI/GR复合碳纸展现出在高性能超级电容器柔性电极材料的潜在应用价值.  相似文献   

14.
采用改进的Hummers法制备氧化石墨烯(GO),首先,石墨与浓硫酸、过硫酸钾和五氧化二磷反应制得强氧化产物,随后将其与浓硫酸、硝酸钠、高锰酸钾反应,经双氧水发泡、酸洗、超声等合成氧化石墨烯水溶液,再通过金属箔还原和基底转移过程制备GO-氧化铟锡(ITO)复合电极材料.通过金属箔还原和基底转移过程制备GO-氧化铟锡(ITO)复合电极材料.利用电化学聚合法在GO-ITO复合电极上制备聚苯胺(PANI)薄膜,并对其形貌结构、电化学及电致变色性质进行表征.结果表明,与ITO电极相比,采用GO-ITO复合电极制备的PANI的成膜性得到明显改善,复合电极具有更加均匀细致的颗粒表面,增大了聚合物与电解液之间的接触面积,为电致变色过程中平衡离子的注入/脱出提供了更多的通道,因而PANI薄膜在700nm处的光学对比度提高了约13%,响应速度缩短了约2.6 s,着色效率高达169.6 cm2/C.GO的引入保持了PANI良好的电化学稳定性.GO-ITO复合电极有效改善了聚合物的综合性能,对于聚合物电致变色材料及器件的开发具有潜在的应用前景.  相似文献   

15.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI).采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试.结果显示,少量ODA-G的引入为PANI的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI的赝电容.在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI的比电容达到787 F·g-1,而相应的PANI仅有426 F·g-1.此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   

16.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI). 采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试. 结果显示,少量ODA-G的引入为PANI 的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI 的赝电容. 在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI 的比电容达到787 F·g-1,而相应的PANI 仅有426 F·g-1. 此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   

17.
聚苯胺/碳纳米纤维复合材料的制备及电容性能   总被引:1,自引:0,他引:1  
采用原位聚合法制备了聚苯胺/碳纳米纤维(PANI/CNF)复合材料,用傅里叶变换红外(FT-IR)光谱、热重分析(TGA)、扫描电镜(SEM)和孔分布及比表面积测定仪研究了复合材料的表面官能团、组成、表面形貌及比表面积,并运用循环伏安(CV)法和计时电位法测试了PANI/CNF布作为电极材料的电化学性能.研究结果表明:PANI/CNF复合材料具有粗糙的毛刺结构,PANI沿碳纳米纤维均匀分布;PANI/CNF电极氧化还原反应的可逆性良好;在100mA·g-1电流密度下,当PANI含量为44.4%(w)时,复合材料比电容量高达587.1F·g-1,比能量为66.1Wh·kg-1,电流密度为800mA·g-1时比功率可达1014.2W·kg-1;在5A·g-1的电流密度下,1000次循环充放电后,复合材料的比电容量衰减28%.PANI/CNF复合材料具有良好的导电性和快速充放电能力,是一种优良的超级电容器电极材料.  相似文献   

18.
近些年来,石墨烯以其独特的结构和优异的性质成为备受瞩目的研究前沿和热点。石墨烯作为纳米增强组分,少量添加可以使聚合物的物理性能得到大幅地提高。本文就石墨烯及其在聚合物复合材料的研究进展进行了综述,着重阐述了现已工业化制备石墨烯的氧化还原法,以及石墨烯/聚合物复合材料的制备方法(溶液共混、原位聚合和熔融共混)和性能(电学性能、导热性能、力学性能、热性能以及气体阻隔性能),并指出其待解决的关键技术及工业化前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号