首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
This paper characterizes the calmness property of the argmin mapping in the framework of linear semi-infinite optimization problems under canonical perturbations; i.e., continuous perturbations of the right-hand side of the constraints (inequalities) together with perturbations of the objective function coefficient vector. This characterization is new for semi-infinite problems without requiring uniqueness of minimizers. For ordinary (finitely constrained) linear programs, the calmness of the argmin mapping always holds, since its graph is piecewise polyhedral (as a consequence of a classical result by Robinson). Moreover, the so-called isolated calmness (corresponding to the case of unique optimal solution for the nominal problem) has been previously characterized. As a key tool in this paper, we appeal to a certain supremum function associated with our nominal problem, not involving problems in a neighborhood, which is related to (sub)level sets. The main result establishes that, under Slater constraint qualification, perturbations of the objective function are negligible when characterizing the calmness of the argmin mapping. This result also states that the calmness of the argmin mapping is equivalent to the calmness of the level set mapping.  相似文献   

2.
Three constraint qualifications (the weak generalized Robinson constraint qualification, the bounded constraint qualification, and the generalized Abadie constraint qualification), which are weaker than the generalized Robinson constraint qualification (GRCQ) given by Yen (1997) [1], are introduced for constrained Lipschitz optimization problems. Relationships between those constraint qualifications and the calmness of the solution mapping are investigated. It is demonstrated that the weak generalized Robinson constraint qualification and the bounded constraint qualification are easily verifiable sufficient conditions for the calmness of the solution mapping, whereas the proposed generalized Abadie constraint qualification, described in terms of graphical derivatives in variational analysis, is weaker than the calmness of the solution mapping. Finally, those constraint qualifications are written for a mathematical program with complementarity constraints (MPCC), and new constraint qualifications ensuring the C-stationary point condition of a MPCC are obtained.  相似文献   

3.
《Optimization》2012,61(6):1131-1156
ABSTRACT

This paper is concerned with the strong calmness of the KKT solution mapping for a class of canonically perturbed conic programming, which plays a central role in achieving fast convergence under situations when the Lagrange multiplier associated to a solution of these conic optimization problems is not unique. We show that the strong calmness of the KKT solution mapping is equivalent to a local error bound for the solutions to the perturbed KKT system, and is also equivalent to the pseudo-isolated calmness of the stationary point mapping along with the calmness of the multiplier set mapping at the corresponding reference point. Sufficient conditions are also provided for the strong calmness by establishing the pseudo-isolated calmness of the stationary point mapping in terms of the noncriticality of the associated multiplier, and the calmness of the multiplier set mapping in terms of a relative interior condition for the multiplier set. These results cover and extend the existing ones in Hager and Gowda [Stability in the presence of degeneracy and error estimation. Math Program. 1999;85:181–192]; Izmailov and Solodov [Stabilized SQP revisited. Math Program. 2012;133:93–120] for nonlinear programming and in Cui et al. [On the asymptotic superlinear convergence of the augmented Lagrangian method for semidefinite programming with multiple solutions. 2016, arXiv: 1610.00875v1]; Zhang and Zhang [Critical multipliers in semidefinite programming. 2018, arXiv: 1801.02218v1] for semidefinite programming.  相似文献   

4.
In this paper, a (local) calmness condition of order α is introduced for a general vector optimization problem with cone constraints in infinite dimensional spaces. It is shown that the (local) calmness is equivalent to the (local) exact penalization of a vector-valued penalty function for the constrained vector optimization problem. Several necessary and sufficient conditions for the local calmness of order α are established. Finally, it is shown that the local calmness of order 1 implies the existence of normal Lagrange multipliers. Presented at the 6th International Conference on Optimization: Techniques and Applications, Ballarat, Australia, December 9–11, 2004 This work is supported by the Postdoctoral Fellowship of Hong Kong Polytechnic University.  相似文献   

5.

Using techniques of variational analysis, necessary and sufficient subdifferential conditions for Hölder error bounds are investigated and some new estimates for the corresponding modulus are obtained. As an application, we consider the setting of convex semi-infinite optimization and give a characterization of the Hölder calmness of the argmin mapping in terms of the level set mapping (with respect to the objective function) and a special supremum function. We also estimate the Hölder calmness modulus of the argmin mapping in the framework of linear programming.

  相似文献   

6.
Solutions to optimization problems of convex type are typically characterized by saddle point conditions in which the primal vector is paired with a dual multiplier vector. This paper investigates the behavior of such a primal-dual pair with respect to perturbations in parameters on which the problem depends. A necessary and sufficient condition in terms of certain matrices is developed for the mapping from parameter vectors to saddle points to be single-valued and Lipschitz continuous locally. It is shown that the saddle point mapping is then semi-differentiable, and that its semi-derivative at any point and in any direction can be calculated by determining the unique solutions to an auxiliary problem of extended linear-quadratic programming and its dual. A matrix characterization of calmness of the solution mapping is provided as well.  相似文献   

7.
本文表明了非线性规划中常见的约束规格对一般双层规划不成立,并对双层规划可以满足的较弱的约束规格“部分平静”,给出了使其成立的充分条件.  相似文献   

8.
《Set-Valued Analysis》2008,16(2-3):199-227
The paper contains two groups of results. The first are criteria for calmness/subregularity for set-valued mappings between finite-dimensional spaces. We give a new sufficient condition whose subregularity part has the same form as the coderivative criterion for “full” metric regularity but involves a different type of coderivative which is introduced in the paper. We also show that the condition is necessary for mappings with convex graphs. The second group of results deals with the basic calculus rules of nonsmooth subdifferential calculus. For each of the rules we state two qualification conditions: one in terms of calmness/subregularity of certain set-valued mappings and the other as a metric estimate (not necessarily directly associated with aforementioned calmness/subregularity property). The conditions are shown to be weaker than the standard Mordukhovich–Rockafellar subdifferential qualification condition; in particular they cover the cases of convex polyhedral set-valued mappings and, more generally, mappings with semi-linear graphs. Relative strength of the conditions is thoroughly analyzed. We also show, for each of the calculus rules, that the standard qualification conditions are equivalent to “full” metric regularity of precisely the same mappings that are involved in the subregularity version of our calmness/subregularity condition. The research of Jiří V. Outrata was supported by the grant A 107 5402 of the Grant Agency of the Academy of Sciences of the Czech Republic.  相似文献   

9.
In this paper we deal with parameterized linear inequality systems in the n-dimensional Euclidean space, whose coefficients depend continuosly on an index ranging in a compact Hausdorff space. The paper is developed in two different parametric settings: the one of only right-hand-side perturbations of the linear system, and that in which both sides of the system can be perturbed. Appealing to the backgrounds on the calmness property, and exploiting the specifics of the current linear structure, we derive different characterizations of the calmness of the feasible set mapping, and provide an operative expresion for the calmness modulus when confined to finite systems. In the paper, the role played by the Abadie constraint qualification in relation to calmness is clarified, and illustrated by different examples. We point out that this approach has the virtue of tackling the calmness property exclusively in terms of the system’s data.  相似文献   

10.
Constraint qualifications in terms of approximate Jacobians are investigated for a nonsmooth constrained optimization problem, in which the involved functions are continuous but not necessarily locally Lipschitz. New constraint qualifications in terms of approximate Jacobians, weaker than the generalized Robinson constraint qualification (GRCQ) in Jeyakumar and Yen [V. Jeyakumar, N.D. Yen, Solution stability of nonsmooth continuous systems with applications to cone-constrained optimization, SIAM J. Optim. 14 5 (2004) 1106-1127], are introduced and some examples are provided to show the utility of constrained qualifications introduced. Since the calmness condition is regarded as the basic condition for optimality conditions, the relationships between the constraint qualifications proposed and the calmness of solution mapping are also studied.  相似文献   

11.
ABSTRACT

In this paper we develop point-based formulas for the calmness modulus of the feasible set mapping in the context of linear inequality systems with a fixed abstract constraint and (partially) perturbed linear constraints. The case of totally perturbed linear systems was previously analyzed in [Cánovas MJ, López MA, Parra J, et al. Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var Anal. 2014;22:375–389, Section 5]. We point out that the presence of such an abstract constraint yields the current paper to appeal to a notable different methodology with respect to previous works on the calmness modulus in linear programming. The interest of this model comes from the fact that partially perturbed systems naturally appear in many applications. As an illustration, the paper includes an example related to the classical central path construction. In this example we consider a certain feasible set mapping whose calmness modulus provides a measure of the convergence of the central path. Finally, we underline the fact that the expression for the calmness modulus obtained in this paper is (conceptually) implementable as far as it only involves the nominal data.  相似文献   

12.
本文将 Rosenberg 在文[1]中定义的单目标规划的镇定性、稳定性概念推广到多目标的情形,讨论多目标规划问题(VP)(?)f(x)s.t.g_k(x)≤0,k∈K_1,h_k(x)=0,k∈K_2的弱镇定性、弱稳定性、局部弱稳定性、一致局部弱稳定性,以及罚函数问题  相似文献   

13.
In this paper, we study the relationship between calmness and exact penalization for vector optimization problems under nonlinear perturbations. Some sufficient conditions for the problem calmness are also derived.  相似文献   

14.
Exact Penalty Functions for Convex Bilevel Programming Problems   总被引:2,自引:0,他引:2  
In this paper, we propose a new constraint qualification for convex bilevel programming problems. Under this constraint qualification, a locally and globally exact penalty function of order 1 for a single-level reformulation of convex bilevel programming problems is given without requiring the linear independence condition and the strict complementarity condition to hold in the lower-level problem. Based on these results, locally and globally exact penalty functions for two other single-level reformulations of convex bilevel programming problems can be obtained. Furthermore, sufficient conditions for partial calmness to hold in some single-level reformulations of convex bilevel programming problems can be given.  相似文献   

15.
Although the property of strong metric subregularity of set-valued mappings has been present in the literature under various names and with various (equivalent) definitions for more than two decades, it has attracted much less attention than its older “siblings”, the metric regularity and the strong (metric) regularity. The purpose of this paper is to show that the strong metric subregularity shares the main features of these two most popular regularity properties and is not less instrumental in applications. We show that the strong metric subregularity of a mapping F acting between metric spaces is stable under perturbations of the form f+F, where f is a function with a small calmness constant. This result is parallel to the Lyusternik–Graves theorem for metric regularity and to the Robinson theorem for strong regularity, where the perturbations are represented by a function f with a small Lipschitz constant. Then we study perturbation stability of the same kind for mappings acting between Banach spaces, where f is not necessarily differentiable but admits a set-valued derivative-like approximation. Strong metric q-subregularity is also considered, where q is a positive real constant appearing as exponent in the definition. Rockafellar's criterion for strong metric subregularity involving injectivity of the graphical derivative is extended to mappings acting in infinite-dimensional spaces. A sufficient condition for strong metric subregularity is established in terms of surjectivity of the Fréchet coderivative, and it is shown by a counterexample that surjectivity of the limiting coderivative is not a sufficient condition for this property, in general. Then various versions of Newton's method for solving generalized equations are considered including inexact and semismooth methods, for which superlinear convergence is shown under strong metric subregularity. As applications to optimization, a characterization of the strong metric subregularity of the KKT mapping is obtained, as well as a radius theorem for the optimality mapping of a nonlinear programming problem. Finally, an error estimate is derived for a discrete approximation in optimal control under strong metric subregularity of the mapping involved in the Pontryagin principle.  相似文献   

16.
We address the problem of solving a continuously differentiable nonlinear system of equations under the condition of calmness. This property, also called upper Lipschitz-continuity in the literature, can be described by a local error bound and is being widely used as a regularity condition in optimization. Indeed, it is known to be significantly weaker than classic regularity assumptions that imply that solutions are isolated. We prove that under this condition, the rank of the Jacobian of the function that defines the system of equations must be locally constant on the solution set. In addition, we prove that locally, the solution set must be a differentiable manifold. Our results are illustrated by examples and discussed in terms of their theoretical relevance and algorithmic implications.  相似文献   

17.
This paper introduces the concept of critical objective size associated with a linear program in order to provide operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping under uniqueness of nominal optimal solution and perturbations of all coefficients. Our starting point is an upper bound on this modulus given in Cánovas et al. (4). In this paper we prove that this upper bound is attained if and only if the norm of the objective function coefficient vector is less than or equal to the critical objective size. This concept also allows us to obtain operative lower bounds on the calmness modulus. We analyze in detail an illustrative example in order to explore some strategies that can improve the referred upper and lower bounds.  相似文献   

18.
In an earlier paper optimality conditions expressed in terms of a Lipschitz continuous function which satisfies a condition resembling the Hamilton-Jacobi-Bellman equation were derived. It was shown that a certain hypothesis, strong calmness, is the weakest hypothesis under which such developments are possible. In the present paper it is shown that strong calmness is equivalent to calmness for a wide class of problems. Support is thereby given to strong calmness as being a reasonable hypothesis, since calmness is apparently the weakest known hypothesis assuring normality, in the sense that the Pontryagin maximum principle applies with the cost multiplier nonzero.  相似文献   

19.
《Optimization》2012,61(5):921-954
ABSTRACT

The paper considers a class of vector optimization problems with cone constrained generalized equations. By virtue of advanced tools of variational analysis and generalized differentiation, a limiting normal cone of the graph of the normal cone constrained by the second-order cone is obtained. Based on the calmness condition, we derive an upper estimate of the coderivative for a composite set-valued mapping. The necessary optimality condition for the problem is established under the linear independent constraint qualification. As a special case, the obtained optimality condition is simplified with the help of strict complementarity relaxation conditions. The numerical results on different examples are given to illustrate the efficiency of the optimality conditions.  相似文献   

20.
Penalty function is an important tool in solving many constrained optimization problems in areas such as industrial design and management. In this paper, we study exactness and algorithm of an objective penalty function for inequality constrained optimization. In terms of exactness, this objective penalty function is at least as good as traditional exact penalty functions. Especially, in the case of a global solution, the exactness of the proposed objective penalty function shows a significant advantage. The sufficient and necessary stability condition used to determine whether the objective penalty function is exact for a global solution is proved. Based on the objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the objective penalty function is proved for a local solution. An algorithm is presented in the paper in finding a local solution, with its convergence proved under some conditions. Finally, numerical experiments show that a satisfactory approximate optimal solution can be obtained by the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号