首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Chang CM  Chiu LF  Wang PW  Shieh DB  Lee GB 《Lab on a chip》2011,11(16):2693-2700
This study reports an integrated microfluidic system capable of automatic extraction and analysis of mitochondrial DNA (mtDNA). Mitochondria are the energy production and metabolism centres of human and animal cells, which supply most of the energy for maintaining physiological functions and play an important role in the process of cell death. Because it lacks an effective repair system, mtDNA suffers much higher oxidative damage and usually harbours more mutations than nuclear DNA. Alterations of mtDNA have been reported to be strongly associated with mitochondrial dysfunction, mitochondria-related diseases, aging, and many important human diseases such as diabetes and cancers. Thus, an effective tool for automatic detection of mtDNA deletion is in great need. This study, therefore, proposed a microfluidic system integrating three enabling modules to perform the entire protocol for the detection of mtDNA deletion. Crucial processes which included mtDNA extraction, nucleic acid amplification, separation and detection of the target genes were automatically performed. When compared with traditional assays, the developed microfluidic system consumed fewer samples and reagents, achieved a higher mtDNA extraction rate, and could automate all the processes within a shorter period of time (150 minutes). It may provide a powerful tool for the analysis of mitochondria mutations in the near future.  相似文献   

2.
Mitochondrial DNA (mtDNA) mutations have been associated with disease and aging. Since each cell has thousands of mtDNA copies, clustered into nucleoids of five to ten mtDNA molecules each, determining the effects of a given mtDNA mutation and their connection with disease phenotype is not straightforward. It has been postulated that heteroplasmy (coexistence of mutated and wild-type DNA) follows simple probability rules dictated by the random distribution of mtDNA molecules at the nucleoid level. This model has been used to explain how mutation levels correlate with the onset of disease phenotype and loss of cellular function. Nonetheless, experimental evidence of heteroplasmy at the nucleoid level is scarce. Here, we report a new method to determine heteroplasmy of individual mitochondrial particles containing one or more nucleoids. The method uses capillary cytometry with laser-induced fluorescence detection to detect individual mitochondrial particles stained with PicoGreen, which makes it possible to quantify the mtDNA copy number of each particle. After detection, one or more particles are collected into polymerase chain reaction (PCR) wells and then subjected to real-time multiplexed PCR amplification. This PCR strategy is suitable to obtain the relative abundance of mutated and wild-type mtDNA. The results obtained here indicate that individual mitochondrial particles and nucleoids contained within these particles are not heteroplasmic. The results presented here suggest that current models of mtDNA segregation and distribution (i.e., heteroplasmic nucleoids) need further consideration.  相似文献   

3.
Several lines of evidence indicate that mitochondria are an especially sensitive target for photodamage. Reports of cross resistance between photodynamic therapy (PDT) and the drug cisplatin, along with evidence that depletion of mitochondrial DNA (mtDNA) sensitized cells to cisplatin suggested a study of the photodynamic responsiveness of murine leukemia control L1210 cells versus cells depleted of mtDNA. Loss of mtDNA led to an increased sensitivity to mitochondrial photodamage, while the cytotoxic effects of lysosomal photodamage were not affected. Cells depleted of mtDNA showed an enhanced apoptotic response to PDT involving a mitochondrial target, compared with control cells.  相似文献   

4.
Since 2005, celery and celery products have to be labeled according to Directive 2003/89/EC due to their allergenic potential. In order to provide a DNA-based, rapid and simple detection method suitable for high-throughput analysis, a loop-mediated isothermal amplification (LAMP) assay for the detection of celery (Apium graveolens) was developed. The assay was tested for specificity for celery since closely related species also hold food relevance. The limit of detection (LOD) for spiked food samples was found to be as low as 7.8 mg of dry celery powder per kilogram. An evaluation of different amplification and detection platforms was performed to show reliable detection independent from the instrument used for amplification (thermal cycler or heating block) and detection mechanisms (real-time fluorescence detection, agarose gel electrophoresis or nucleic acid staining). The analysis of 10 commercial food samples representing diverse and complex food matrices, and a false-negative rate of 0 % for approximately 24 target copies or 0.08 ng celery DNA for three selected food matrices show that LAMP has the potential to be used as an alternative strategy for the detection of allergenic celery. The performance of the developed LAMP assay turned out to be equal or superior to the best available PCR assay for the detection of celery in food products.  相似文献   

5.
Which genetic marker for which conservation genetics issue?   总被引:8,自引:0,他引:8  
Wan QH  Wu H  Fujihara T  Fang SG 《Electrophoresis》2004,25(14):2165-2176
Conservation genetics focuses on the effects of contemporary genetic structuring on long-term survival of a species. It helps wildlife managers protect biodiversity by identifying a series of conservation units, which include species, evolutionarily significant units (ESUs), management units (MUs), action units (AUs), and family nets (FNs). Although mitochondrial DNA (mtDNA) evolves 5-10 times faster than single-copy nuclear DNA (scnDNA), it records few traces of contemporary events. Thus, mtDNA can be used to resolve taxonomic uncertainties and ESUs. Variable number of tandem repeats (VNTRs) evolve 100-1000 times faster than scnDNA and provide a powerful tool for analyzing recent and contemporary events. VNTR analysis techniques include polymerase chain reaction (PCR)-based microsatellite assays and oligonucleotide probing. Size homoplasy problems in PCR-based microsatellite assays can strongly affect the inference of recent population history. The high homozygosity in endangered species is reflected in a relatively low number and level of variability in microsatellite loci. This combined with "allelic dropout" and "misprinting" errors contributes to the generation of highly biased genetic data following analyses of natural populations. Thus, in conservation genetics, microsatellites are of limited use for identifying ESUs, MUs, and AUs. In contrast to PCR-based microsatellite analysis, oligonucleotide probing avoids errors resulting from PCR amplification. It is particularly suitable for inferring recent population history and contemporary gene flow between fragmented subpopulations. Oligonucleotide fingerprinting generates individual-specific DNA banding patterns and thus provides a highly precise tool for monitoring demography of natural populations. Hence, DNA fingerprinting is powerful for distinguishing ESUs, MUs, AUs, and FNs. The use of oligonucleotide fingerprinting and fecal DNA is opening new areas for conservation genetics.  相似文献   

6.
Real-time PCR (qPCR) is the principal technique for the quantification of pathogen biomass in host tissue, yet no generic methods exist for the determination of the limit of quantification (LOQ) and the limit of detection (LOD) in qPCR. We suggest using the Youden index in the context of the receiver operating characteristic (ROC) curve analysis for this purpose. The LOQ was defined as the amount of target DNA that maximizes the sum of sensitivity and specificity. The LOD was defined as the lowest amount of target DNA that was amplified with a false-negative rate below a given threshold. We applied this concept to qPCR assays for Fusarium verticillioides and Fusarium proliferatum DNA in maize kernels. Spiked matrix and field samples characterized by melting curve analysis of PCR products were used as the source of true positives and true negatives. On the basis of the analysis of sensitivity and specificity of the assays, we estimated the LOQ values as 0.11 pg of DNA for spiked matrix and 0.62 pg of DNA for field samples for F. verticillioides. The LOQ values for F. proliferatum were 0.03 pg for spiked matrix and 0.24 pg for field samples. The mean LOQ values correspond to approximately eight genomes for F. verticillioides and three genomes for F. proliferatum. We demonstrated that the ROC analysis concept, developed for qualitative diagnostics, can be used for the determination of performance parameters of quantitative PCR.  相似文献   

7.
The development of DNA-based methods for the identification and quantification of fish in food and feed samples is frequently focused on a specific fish species and/or on the detection of mitochondrial DNA of fish origin. However, a quantitative method for the most common fish species used by the food and feed industry is needed for official control purposes, and such a method should rely on the use of a single-copy nuclear DNA target owing to its more stable copy number in different tissues. In this article, we report on the development of a real-time PCR method based on the use of a nuclear gene as a target for the simultaneous detection of fish DNA from different species and on the evaluation of its quantification potential. The method was tested in 22 different fish species, including those most commonly used by the food and feed industry, and in negative control samples, which included 15 animal species and nine feed ingredients. The results show that the method reported here complies with the requirements concerning specificity and with the criteria required for real-time PCR methods with high sensitivity.  相似文献   

8.
Min J  Kim JH  Lee Y  Namkoong K  Im HC  Kim HN  Kim HY  Huh N  Kim YR 《Lab on a chip》2011,11(2):259-265
Microfluidic devices for on-chip amplification of DNA from various biological and environmental samples have gained extensive attention over the past decades with many applications including molecular diagnostics of disease, food safety and biological warfare testing. But the integration of sample preparation functions into the chip remains a major hurdle for practical application of the chip-based diagnostic system. We present a PCR-based molecular diagnostic device comprised of a microfabricated chip and a centrifugal force assisted liquid handling tube (CLHT) that is designed to carry out concentration and purification of DNA and subsequent amplification of the target gene in a single chip. The reaction chamber of the chip contains an array of pillar structures to increase the surface area for capturing DNA from a raw sample of macro volume in the presence of kosmotropic agents. The CLHT was designed to provide an effective interface between sample preparation and the microfluidic PCR chip. We have characterized the effect of various fluidic parameters including DNA capture, amplification efficiency and centrifugal pressure generated upon varying sample volume. We also evaluated the performance of this system for quantitative detection of E. coli O157:H7. From the samples containing 10(1) to 10(4) cells per mL, the C(T) value linearly increased from 25.1 to 34.8 with an R(2) value greater than 0.98. With the effectiveness and simplicity of operation, this system will provide an effective interface between macro and micro systems and bridge chip-based molecular diagnosis with practical applications.  相似文献   

9.
Forensic analysis of mitochondrial displacement loop (D‐loop) sequences using Sanger sequencing or SNP detection by minisequencing is well established. Pyrosequencing has become an important alternative because it enables high‐throughput analysis and the quantification of individual mitochondrial DNAs (mtDNAs) in samples originating from more than one individual. DNA typing of the mitochondrial D‐loop region is usually the method of choice if STR analysis fails because of trace amounts of DNA and/or extensive degradation. The main aim of the present work was to optimize the efficiency of pyrosequencing. To do this, 31 SNPs within the hypervariable regions I and II of the D‐loop of human mtDNA were simultaneously analyzed. As a novel approach, we applied two sets of amplification primers for the multiplexing assay. These went in combination with four sequencing primers for pyrosequencing. This method was compared with conventional sequencing of mtDNA from blood and biological trace materials.  相似文献   

10.
A review is presented of nucleic acid amplification-based methodology, specifically polymerase chain reaction (PCR)-based assays, for the detection of Listeria monocytogenes in food and environmental samples. Until recently, developmental challenges including poor sensitivity, due in part to reaction inhibition by components of the sample matrix, and the potential for false-positive reactions have limited routine application of PCR-based screening assays. Commercial assays address these challenges while offering convenient, standardized protocols, a high level of automation, and results within 2 days after the sampling date. Although sample enrichment is necessary to achieve desired detection limits, continued efforts toward template purification will facilitate the development of assays offering real-time, quantitative results. The development of ribonucleic acid (RNA) amplification-based assays may increase in importance, particularly if end-product testing is prioritized by regulatory agencies, as messenger RNA appears to serve as an accurate indicator of cell viability. Further, the increase in target copy number may improve assay sensitivity. PCR-based screening methods offer efficient, reliable results and are ideal for monitoring the presence of L. monocytogenes in foods and in the food processing environment.  相似文献   

11.
The electrochemical and electrochemiluminescence (ECL) detection of cell lines of Burkitt’s lymphoma (Ramos) by using magnetic beads as the separation tool and high‐affinity DNA aptamers for signal recognition is reported. Au nanoparticles (NPs) bifunctionalized with aptamers and CdS NPs were used for electrochemical signal amplification. The anodic stripping voltammetry technology employed for the analysis of cadmium ions dissolved from CdS NPs on the aggregates provided a means to quantify the amount of the target cells. This electrochemical method could respond down to 67 cancer cells per mL with a linear calibration range from 1.0×102 to 1.0×105 cells mL?1, which shows very high sensitivity. In addition, the assay was able to differentiate between target and control cells based on the aptamer used in the assay, indicating the wide applicability of the assay for diseased cell detection. ECL detection was also performed by functionalizing the signal DNA, which was complementary to the aptamer of the Ramos cells, with tris(2,2‐bipyridyl) ruthenium. The ECL intensity of the signal DNA, replaced by the target cells from the ECL probes, directly reflected the quantity of the amount of the cells. With the use of the developed ECL probe, a limit of detection as low as 89 Ramos cells per mL could be achieved. The proposed methods based on electrochemical and ECL should have wide applications in the diagnosis of cancers due to their high sensitivity, simplicity, and low cost.  相似文献   

12.
A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.  相似文献   

13.
通过捕获探针与纳米金膜之间的共价连接, 保证了滚环扩增(RCA)产物始终结合于金膜表面, Phi29 DNA聚合酶的高效扩增和Escherichia coli DNA链接酶的高度精确性使检测达到单碱基识别, 检测灵敏度达到104 copies/mL. 实验结果表明, 与单碱基错配序列相比, RCA可明显增强检测的灵敏度. 该RCA基因传感器操作简单, 灵敏度和特异性较高, 在乙型肝炎病毒的快速检测方面具有一定的开发潜力.  相似文献   

14.
This article describes a simple and homogeneous fluorescent aptasensor for the detection of ochratoxin A (OTA). With its high specificity and simplicity; RecJf exonuclease is used to cleave DNA strand of the FAM-aptamer/OTA complex and realize target recycling signal amplification. In order to avoid the loss of reaction system, magnetic beads (MBs) are added only once at the last experimental step. This proposed fluorescent aptasensor showed the higher sensitivity in the range of 0.1–100 ng/mL with LOD of 0.056 ng/mL, and the good selectivity against other interfering toxins. The feasibility of the prepared aptasensor was studied by detecting OTA in spiked liquor and cereal samples. The obtained average recoveries ranged from 92% to 115%. This study provides a promising application with convenience and rapidness in the aptasensor fabrication for food safety analysis.  相似文献   

15.
Tobacco nuclear DNA (nDNA) was isolated from tobacco leaf nuclei which were prepared according to our previously published procedure [8]. The nDNA was characterized by base analysis, absorption spectrophotometry, analytical CsCl density gradient equilibrium centrifugation and by its melting behaviour. The results show that the isolated tobacco nDNA is native, high molecular weight DNA, which is free of detectable amounts of chloroplast DNA, RNA, protein and polysaccharides. From its melting behaviour it was concluded that tobacco nDNA can be placed close to calf thymus DNA with respect to intramolecular heterogeneity. Experiments on the partial and complete denaturation of tobacco nDNA and its ability to renature are also reported.  相似文献   

16.
Semi‐nested PCR with allele‐specific (AS) primers and sequencing of mitochondrial DNA (mtDNA) were performed to analyze and interpret DNA mixtures, especially when biological materials were degraded or contained a limited amount of DNA. SNP‐STR markers were available to identify the minor DNA component using AS‐PCR; moreover, SNPs in mtDNA could be used when the degraded or limited amounts of DNA mixtures were not successful with SNP‐STR markers. Five pairs of allele‐specific primers were designed based on three SNPs (G15043A, T16362C, and T16519C). The sequence of mtDNA control region of minor components was obtained using AS‐PCR and sequencing. Sequences of the amplification fragments were aligned and compared with the sequences of known suspects or databases. When this assay was used with the T16362C and T16519C SNPs, we found it to be highly sensitive for detecting small amounts of DNA (~30 pg) and analyzing DNA mixtures of two contributors, even at an approximately 1‰ ratio of minor and major components. An exception was tests based on the SNP G15043A, which required approximately 300 pg of a 1% DNA mixture. In simulated three contributor DNA mixtures (at rate of 1:1:1), control region fragments from each contributor were detected and interpreted. AS‐PCR combined with semi‐nested PCR was successfully used to identify the mtDNA control region of each contributor, providing biological evidence for excluding suspects in forensic cases, especially when biological materials were degraded or had a limited amount of DNA.  相似文献   

17.
Zischler H 《Electrophoresis》2000,21(3):531-536
To infer the possible mutational events taking place along the interorganellar transfer of genetic material from mitochondria to the nucleus, four integrations of mitochondrial DNA (mtDNA) in the human genome were characterized together with their flanking nuclear sequences. By determining their presence/absence status in different primate species, these integrations were inferred to have occurred on the lineages leading to catarrhines (Old World monkeys and hominoids), to hominoids and to humans, respectively. In case of a polymorphic state, with respect to its presence in a certain species, each preintegration sequence was either cloned in the same species or in a primate taxon that branched off before the transfer of the mtDNA to the nucleus took place. For the four mtDNA integrations presented here, random mobilization of the mtDNA and differing mechanisms for generating free ends in the nuclear target sequences can be inferred. Additionally, no common sequence features at the preintegration sites could be observed for these integrations. Moreover, the comparisons of the sites before and after integration suggest different ways of integration. Thus, mtDNA integrations represent unique molecular recombinations in the evolutionary history and can, according to their presence/absence status in different species, help to determine the branching order in phylogenetic trees.  相似文献   

18.
Mitochondrial DNA (mtDNA) plays a crucial but incompletely understood role in cellular biochemistry and etiology of numerous disease states. Thus, there is an urgent need for targeted probes that can dynamically respond to changes to mtDNA such as copy number in live cells, but it is difficult to permeate the mitochondrial membrane of the living cell. Now, a ruthenium(II) light‐switching probe targeted by peptide vectorization selectively to mitochondrial nucleoids is presented. Evidence for DNA binding by the probe in live cells is derived from confocal fluorescence microscopy, resonance Raman, and luminescence lifetime imaging. While viable under imaging conditions, specific staining of mitochondrial DNA permitted efficient and selective photoinduced toxicity on a cell‐by‐cell basis under higher excitation intensities. This powerful combination of imaging and photocytotoxicity is an important step towards realizing phototheranostic application of such RuII probes.  相似文献   

19.
A novel PCR-RFLP method has been developed for the identification of six commercially relevant penaeid shrimp species in raw and processed food products. The method can be completed within 8 h. To implement the method, PCR amplification with the crustF/crustR primers, targeted to the amplification of a ca. 181 bp region of the cytochrome b (cytb) mitochondrial gene in penaeid shrimps, was coupled to restriction analysis with CviJI, DdeI and NlaIV. The method was also applied successfully to the identification of shrimp species in complex processed foods, including this type of shellfish as an added-value food ingredient. The small size of this molecular target facilitates amplification from fresh, frozen, or precooked samples, where DNA fragmentation may be relevant and fragment size critical. We also report the first cytb mitochondrial sequences described to date for the species Farfantepenaeus notialis, Parapenaeus longirostris and Pleoticus muelleri, and these nearly triplicate current knowledge of reference nucleotide sequences in this mitochondrial region for this group of species. The cytb mitochondrial gene may also be considered as a molecular marker for identification and phylogenetic purposes in penaeid shrimp species.  相似文献   

20.
The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号