首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantitative capabilities of a linear ion trap high‐resolution mass spectrometer (LTQ‐Orbitrap™) were investigated using full scan mode bracketing the m/z range of the ions of interest and utilizing a mass resolution (mass/FWHM) of 15000. Extracted ion chromatograms using a mass window of ±5–10 mmu centering on the theoretical m/z of each analyte were generated and used for quantitation. The quantitative performance of the LTQ‐Orbitrap™ was compared with that of a triple quadrupole (API 4000) operating using selected reaction monitoring (SRM) detection. Comparable assay precision, accuracy, linearity and sensitivity were observed for both approaches. The concentrations of actual study samples from 15 Merck drug candidates reported by the two methods were statistically equivalent. Unlike SRM being a tandem mass spectrometric (MS/MS)‐based detection method, a high resolution mass spectrometer operated in full scan does not need MS/MS optimization. This approach not only provides quantitative results for compounds of interest, but also will afford data on other analytes present in the sample. An example of the identification of a major circulating metabolite for a preclinical development study is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Artemisinin (QHS) is one of the first‐line antimalarials, and autoinduction of CYP‐mediated metabolism can result in its reduced exposure. To better understand the autoinduction of QHS, we evaluated the pharmacokinetics of QHS and its phase I metabolites in rats using an liquid chromatography‐high resolution mass spectrometry (LC‐HRMS) method. The LC separation was improved, allowing the separation of QHS and its metabolites from their diastereomers, and seven metabolites of QHS with relatively high exposure were identified in rat plasma, including deoxyartemisinin (DQHS), three monoyhydroxylated plus deoxyl metabolites (M1–M3) and three monohydroxylated metabolites (M4–M6). For detection, a high‐resolution LTQ/Orbitrap mass spectrometer with an electrospray ionization (ESI) inlet in the positive ion mode was used. High‐resolution extracted ion chromatograms for each analyte were obtained by processing the full‐scan MS dataset with 10 ppm mass tolerance. The plasma samples were pretreated by protein precipitation with acetonitrile. The standard curve was linear (r2 > 0.99) over the QHS and DQHS concentration range of 5.0–200.0 ng/ml in 50 µl of plasma, which offered sufficient sensitivity and accuracy for the determination of QHS and its metabolites. A 3‐day validation approach was used for absolute quantitation of QHS and DQHS. The other six metabolites of QHS were semiquantified based on the calibration curve of QHS. The present method was applied to the pharmacokinetic study of QHS in rats after a single oral administration. The data shown here also suggest that this type of mass analyzer will be capable of a quantitative–qualitative workflow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The biotoxins, azaspiracids (AZAs), from marine phytoplankton accumulate in shellfish and affect human health by causing severe gastrointestinal disturbance, diarrhea, nausea and vomiting. Specific and sensitive methods have been developed and validated for the determination of the most commonly occurring azaspiracid analogs. An LTQ Orbitrap mass spectrometer is a hybrid instrument that combines linear ion trap (LIT) mass spectrometry (MS) with high‐resolution Fourier transform (FT) MS and this was exploited to perform simultaneous ultra‐high‐resolution full‐scan MS analysis and collision‐induced dissociation (CID) tandem mass spectrometry (MS/MS). Using the highest mass resolution setting (100 000 FWHM) in full‐scan mode, the methodology was validated for the determination of six AZAs in mussel (Mytilus galloprovincialis) tissue extracts. Ultra‐high mass resolution, together with a narrow mass tolerance window of ±2 mDa, dramatically improved detection sensitivity. In addition to employing chromatographic resolution to distinguish between the isomeric azaspiracid analogs, AZA1/AZA6 and AZA4/AZA5, higher energy collisionally induced dissociation (HCD) fragmentation on selected precursor ions were performed in parallel with full‐scan FTMS. Using HCD MS/MS, most precursor and product ion masses were determined within 1 ppm of the theoretical m/z values throughout the mass spectral range and this enhanced the reliability of analyte identity. For the analysis of mussels (M. galloprovincialis), the method limit of quantitation (LOQ) was 0.010 µg/g using full‐scan FTMS and this was comparable with the LOQ (0.007 µg/g) using CID MS/MS. The repeatability data were; intra‐day RSD% (1.8–4.4%; n = 6) and inter‐day RSD% (4.7–8.6%; n = 3). Application of these methods to the analysis of mussels (M. edulis) that were naturally contaminated with azaspiracids, using high‐resolution full‐scan Orbitrap MS and low‐resolution CID MS/MS, produced equivalent quantitative data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A transmission geometry optical configuration allows for smaller laser spot size to facilitate high‐resolution matrix‐assisted laser/desorption ionization (MALDI) mass spectrometry. This increase in spatial resolution (ie, smaller laser spot size) is often associated with a decrease in analyte signal. MALDI‐2 is a post‐ionization technique, which irradiates ions and neutrals generated in the initial MALDI plume with a second orthogonal laser pulse, and has been shown to improve sensitivity. Herein, we have modified a commercial Orbitrap mass spectrometer to incorporate a transmission geometry MALDI source with MALDI‐2 capabilities to improve sensitivity at higher spatial resolutions.  相似文献   

5.
The yeast Saccharomyces cerevisiae synthesizes three classes of sphingolipids: inositolphosphoceramides (IPCs), mannosyl-inositolphosphoceramides (MIPCs), and mannosyl-diinositolphosphoceramides (M(IP)2C). Tandem mass spectrometry of their molecular anions on a hybrid quadrupole time-of-flight (QqTOF) instrument produced fragments of inositol-containing head groups, which were specific for each lipid class. MS(n) analysis performed on a hybrid linear ion trap-orbitrap (LTQ Orbitrap) mass spectrometer with better than 3 ppm mass accuracy identified fragment ions specific for the amide-linked fatty acid and the long chain base moieties in individual molecular species. By selecting m/z of class-specific fragment ions for multiple precursor ion scanning, we profiled yeast sphingolipids in total lipid extracts on a QqTOF mass spectrometer. Thus, a combination of QqTOF and LTQ Orbitrap mass spectrometry lends itself to rapid, comprehensive and structure-specific profiling of the molecular composition of sphingolipids and glycerophospholipids in important model organisms, such as fungi and plants.  相似文献   

6.
A rapid screening method for pesticides has been developed to promote more efficient processing of produce entering the United States. Foam swabs were used to recover a multiclass mixture of 132 pesticides from the surfaces of grapes, apples, and oranges. The swabs were analyzed using direct analysis in real time (DART) ionization coupled with a high‐resolution Exactive Orbitrap? mass spectrometer. By using a DART helium temperature gradient from 100–350°C over 3 min, a minimal separation of analytes based on volatility differences was achieved. This, combined with the Exactive's mass resolution of 100 000, allowed the chromatographic step, along with the typical compositing and extraction steps associated with gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/mass spectrometry (LC/MS) approaches, to be eliminated. Detection of 86% of the analytes present was consistently achieved at levels of 2 ng/g (per each apple or orange) and 10 ng/g (per grape). A resolution study was conducted with four pairs of isobaric compounds analyzed at a mass resolution of 100 000. Baseline separation was achieved with analyte ions differing in mass by 25 ppm and analyte ions with a mass difference of 10 ppm were partially resolved. In addition, field samples that had undergone traditional sample preparation using QuEChERS (quick, easy, cheap, rugged, and safe) were analyzed using both LC/MS and DART‐MS and the results from the two techniques were found to be comparable in terms of identification of the pesticides present. The use of swabs greatly increased sample throughput by reducing sample preparation and analysis time. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

7.
Quadrupole Orbitrap instruments (Q Orbitrap) permit high‐resolution mass spectrometry‐based full scan acquisitions and have a number of acquisition modes where the quadrupole isolates a particular mass range prior to a possible fragmentation and high‐resolution mass spectrometry‐based acquisition. Selecting the proper acquisition mode(s) is essential if trace analytes are to be quantified in complex matrix extracts. Depending on the particular requirements, such as sensitivity, selectivity of detection, linear dynamic range, and speed of analysis, different acquisition modes may have to be chosen. This is particularly important in the field of multi‐residue analysis (eg, pesticides or veterinary drugs in food samples) where a large number of analytes within a complex matrix have to be detected and reliably quantified. Meeting the specific detection and quantification performance criteria for every targeted compound may be challenging. It is the aim of this paper to describe the strengths and the limitations of the currently available Q Orbitrap acquisition modes. In addition, the incorporation of targeted acquisitions between full scan experiments is discussed. This approach is intended to integrate compounds that require an additional degree of sensitivity or selectivity into multi‐residue methods.  相似文献   

8.
Five different mass spectrometers interfaced to GC or LC were evaluated for their application to targeted and nontargeted screening of pesticides in two foods, spinach and ginseng. The five MS systems were capillary GC/MS/MS, GC-high resolution time-of-flight (GC/HR-TOF)-MS, TOF-MS interfaced with a comprehensive multidimensional GC (GCxGC/TOF-MS), an MS/MS ion trap hybrid mass (qTrap) system interfaced with an ultra-performance liquid chromatograph (UPLC-qTrap), and UPLC interfaced to an orbital trap high resolution mass spectrometer (UPLC/Orbitrap HR-MS). Each MS system was tested with spinach and ginseng extracts prepared through a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure. Each matrix was fortified at 10 and 50 ng/g for spinach or 25 and 100 ng/g for ginseng with subsets of 486 pesticides, isomers, and metabolites representing most pesticide classes. HR-TOF-MS was effective in a targeted search for characteristic accurate mass ions and identified 97% of 170 pesticides in ginseng at 25 ng/g. A targeted screen of either ginseng or spinach found 94-95% of pesticides fortified for analysis at 10 ng/g with GC/MS/MS or LC/MS/MS using multiple reaction monitoring (MRM) procedures. Orbitrap-MS successfully found 89% of 177 fortified pesticides in spinach at 25 ng/g using a targeted search of accurate mass pseudomolecular ions in the positive electrospray ionization mode. A comprehensive GCxGC/TOF-MS system provided separation and identification of 342 pesticides and metabolites in a single 32 min acquisition with standards. Only 67 or 81% of the pesticides were identified in ginseng and spinach matrixes at 25 ng/g or 10 ng/g, respectively. MS/MS or qTrap-MS operated in the MRM mode produced the lowest false-negative rates, at 10 ng/g. Improvements to instrumentation, methods, and software are needed for efficient use of nontargeted screens in parallel with triple quadrupole MS.  相似文献   

9.
Multiple reaction monitoring (MRM) ratios as provided by tandem mass spectrometers are used to confirm positive residue findings (e.g. veterinary drugs or pesticides). The Commission Decision 2002/657/EEC defines tolerance levels for MRM ratios, which are intended to prevent the reporting of false positives. This paper reports findings where blank sample extracts have been spiked by a drug (difloxacin) and the corresponding measured MRM ratios significantly deviated from MRM ratios observed in matrix‐free solution. The observation was explained by the formation of two different [M+H]+ analyte ions within the electrospray ionization (ESI) interface. These two ions vary only by the site of analyte protonation. Since they are isobaric, they are equally transmitted through the first quadrupole, but are differently fragmented in the collision chamber. The existence of two isobaric ions was deduced by statistical data and the observation of a doubly charged analyte ion. It was hypothesized that the combined presence of [M+H]+ and [M+2H]2+ implies the existence of two different singly charged ion species differing only by the site of protonation. Low‐ and high‐energy interface‐induced fragmentation was performed on the samples. The surviving precursor ion population was mass selected and again fragmented in the collision chamber. Equal product ion spectra would be expected. However, very different product ion spectra were observed for the two interface regimes. This is consistent with the assumption that the two postulated isobaric precursor ions show different stability in the interface. Hence the abundance ratio among the two types of surviving precursor ions will shift and change the resulting product ion spectra. The existence of the postulated singly charged ions with multiple chargeable sites was finally confirmed by successful ion mobility separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A novel matrix substance, 2-(4-hydroxyphenylazo) benzoic acid, or HABA, has been found to be very advantageous for matrix-assisted ultraviolet laser desorption ionization mass spectrometry. This compound has been successfully used for the desorption of peptides, proteins, and glycoproteins up to approximately 250 kDa. For these materials, the most abundant analyte-related peaks correspond to [M + H]+ ions and multiply protonated molecules. Comparisons with sinapic acid, 2,5-dihydroxybenzoic acid, and α-cyano-4-hydroxycinnamic acid indicate that the new matrix provides comparable sensitivity for peptides and smaller proteins but results in better sensitivity for larger proteins and glycoproteins in protein mixtures. Other matrices discriminate against the higher mass components in these cases. Somewhat reduced mass resolution has been found for smaller proteins, but for larger proteins and glycoproteins the best mass resolution can often be obtained with the new matrix. For other classes of compounds that form ions predominantly via cation attachment, at least as good sensitivity and even better resolution have been obtained. Derivatized glycolipids and synthetic polymers have been studied in detail. For the analysis of many synthetic polymers, the best performance in terms of sensitivity and mass resolution has been observed with HABA matrix. Mass resolution was higher for cation adducts than for the protonated peptide molecules in the same mass range. The new matrix exhibits greatly extended (in time) analyte ion production and reproducibility. Owing to the uniform sample surface with this matrix, barely any spatial variation of the ion signal could be observed. In addition, many hundreds of single-shot mass spectra could be accumulated from the same spot, even for larger proteins.  相似文献   

11.
Aerosol mass spectrometry with laser desorption/ionization was investigated as a possible tool for real-time monitoring of the presence of the pesticide paraquat on the surface of airborne soil particles. Laser desorption/ionization of paraquat dication produced only singly charged ions. The most abundant species were [M](+.), [M - H](+), and [M - CH3](+). Operation of the ion trap mass spectrometer in the MS(3) mode allowed the reduction of the signal dependence on laser fluence fluctuations and permitted the detection of the analyte with good sensitivity and high selectivity. The estimated limit of detection in terms of surface coverage was 0.016 monolayers, approximately 1 attomole of paraquat on the surface of a single micron-sized soil particle.  相似文献   

12.
Resolution improvements in time-of-flight instrumentation and the emergence of the Orbitrap mass spectrometer have researchers using high resolution mass spectrometry to determine elemental compositions and performing screening methods based on the full-scan data from these instruments. This work is focused on examining instrument performance of both a QTOF and a bench-top Orbitrap. In this study, the impact of chromatographic resolution on mass measurement accuracy, mass measurement precision, and ion suppression is examined at a fundamental level. This work was extended to a mixture of over 200 pesticides to determine how well two different software algorithms componentized and correctly identified these compounds under different sets of chromatographic conditions, where co-elution was expected to vary markedly.  相似文献   

13.
14.
There is a growing interest in exploring the use of liquid chromatography coupled with full-scan high resolution accurate mass spectrometry (LC/HRMS) in bioanalytical laboratories as an alternative to the current practice of using LC coupled with tandem mass spectrometry (LC/MS/MS). Therefore, we have investigated the theoretical and practical aspects of LC/HRMS as it relates to the quantitation of drugs in plasma, which is the most commonly used matrix in pharmacokinetics studies. In order to assess the overall selectivity of HRMS, we evaluated the potential interferences from endogenous plasma components by analyzing acetonitrile-precipitated blank human plasma extract using an LC/HRMS system under chromatographic conditions typically used for LC/MS/MS bioanalysis with the acquisition of total ion chromatograms (TICs) using 10 k and 20 k resolving power in both profile and centroid modes. From each TIC, we generated extracted ion chromatograms (EICs) of the exact masses of the [M + H](+) ions of 153 model drugs using different mass extraction windows (MEWs) and determined the number of plasma endogenous peaks detected in each EIC. Fewer endogenous peaks are detected using higher resolving power, narrower MEW, and centroid mode. A 20 k resolving power can be considered adequate for the selective determination of drugs in plasma. To achieve desired analyte EIC selectivity and simultaneously avoid missing data points in the analyte EIC peak, the MEW used should not be too wide or too narrow and should be a small fraction of the full width at half maximum (FWHM) of the profile mass peak. It is recommended that the optimum MEW be established during method development under the specified chromatographic and sample preparation conditions. In general, the optimum MEW, typically ≤ ±20 ppm for 20 k resolving power, is smaller for the profile mode when compared with the centroid mode.  相似文献   

15.
Oxidation of cholesteryl esters in lipoproteins by reactive oxygen species yields cholesteryl ester hydroperoxides (CEOOH). In this study, we developed a novel method for identification and characterization of CEOOH molecules in human lipoproteins by use of reversed-phase liquid chromatography with an hybrid linear ion trap-Orbitrap mass spectrometer (LC-LTQ Orbitrap). Electrospray ionization tandem mass spectrometric analysis was performed in both positive-ion and negative-ion modes. Identification of CEOOH molecules was completed by use of high-mass-accuracy (MA) mass spectrometric data obtained by using the spectrometer in Fourier-transform (FT) mode. Native low-density lipoproteins (nLDL) and native high-density lipoproteins (nHDL) from a healthy donor were oxidized by CuSO(4), furnishing oxidized LDL (oxLDL) and oxidized HDL (oxHDL). No CEOOH molecules were detected in the nLDL and the nHDL, whereas six CEOOH molecules were detected in the oxLDL and the oxHDL. In positive-ion mode, CEOOH was detected as [M + NH(4)](+) and [M + Na](+) ions. In negative-ion mode, CEOOH was detected as [M + CH(3)COO](-) ions. CEOOH were more easily ionized in positive-ion mode than in negative-ion mode. The LC-LTQ Orbitrap method was applied to human plasma and six species of CEOOH were detected. The limit of detection was 0.1 pmol (S/N = 5:1) for synthesized CEOOH.  相似文献   

16.
Kaufmann A  Butcher P  Maden K  Walker S  Widmer M 《Talanta》2011,85(2):991-1000
A simple method for the determination of some anthelmintic drugs and phenylbutazone residues in milk and muscle was developed. Following a fast and easy extraction and evaporation procedure, the extract was injected into an ultra performance liquid chromatography system coupled to a single stage Orbitrap detector. The high mass resolution of 50,000 full width at half maximum and corresponding narrow mass windows permitted a very selective and sensitive detection of analytes without requiring fragmentation of the observed [M+H]+ or [M+Na]+ ions. This eliminated some difficulties which have plagued the analysis of compounds belonging to the group of avermectins. The analytical method was validated according to the EU commission decision for Orbitrap based, but also for more traditional tandem mass spectrometry based detection and quantification. Equal repeatability but significantly higher sensitivity for critical compounds (avermectins) was obtained for the Orbitrap based detection. A result of this study was the conclusion that analytes with poor fragmentation properties (e.g. sodium-cationized molecules) can be more easily quantified by single stage high resolution mass spectrometry than by tandem mass spectrometry.  相似文献   

17.
Herein, we represent a simple method for the detection and characterization of molecular species of triacylglycerol monohydroperoxides (TGOOH) in biological samples by use of reversed-phase liquid chromatography with a LTQ Orbitrap XL mass spectrometer (LC/LTQ Orbitrap) via an electrospray ionization source. Data were acquired using high-resolution, high-mass accuracy in Fourier-transform mode. Platform performance, related to the identification of TGOOH in human lipoproteins and plasma, was estimated using extracted ion chromatograms with mass tolerance windows of 5 ppm. Native low-density lipoproteins (nLDL) and native high-density lipoproteins (nHDL) from a healthy donor were oxidized by CuSO4 to generate oxidized LDL (oxLDL) and oxidized HDL (oxHDL). No TGOOH molecular species were detected in the nLDL and nHDL, whereas 11 species of TGOOH molecules were detected in the oxLDL and oxHDL. In positive-ion mode, TGOOH was found as [M + NH4]+. In negative-ion mode, TGOOH was observed as [M + CH3COO]. TGOOH was more easily ionized in positive-ion mode than in negative-ion mode. The LC/LTQ Orbitrap method was applied to human plasma and three molecular species of TGOOH were detected. The limit of detection is 0.1 pmol (S/N?=?10:1) for each synthesized TGOOH.
Figure
Analysis of triacylglycerol hydroperoxides in human lipoproteins by Orbitrap mass spectrometer  相似文献   

18.
The applicability of ultra-performance liquid chromatography (UPLC) combined with full-scan accurate mass time-of-flight (TOF) and Orbitrap mass spectrometry (MS) to the analysis of hormone and veterinary drug residues was evaluated. Extracts from blank bovine hair were fortified with 14 steroid esters. UPLC-Orbitrap MS performed at a resolving power of 60,000 (FWHM) enabled the detection and accurate mass measurement (<3 ppm error) of all 14 steroid esters at low ng/g concentration level, despite the complex matrix background. A 5 ppm mass tolerance window proved to be essential to generate highly selective reconstructed ion chromatograms (RICs) having reduced background from the hair matrix. UPLC-Orbitrap MS at a lower resolving power of 7500 and UPLC-TOFMS at mass resolving power 10,000 failed both to detect all of the steroid esters in hair extracts owing to the inability to mass resolve analyte ions from co-eluting isobaric matrix compounds. In a second application, animal feed extracts were fortified with coccidiostats drugs at levels ranging from 240 to 1900 ng/g. UPLC-Orbitrap MS conducted at a resolving power of 7500 and 60,000 and UPLC-TOFMS detected all of the analytes at the lowest investigated level. Thanks to the higher analyte-to-matrix background ratio, the utilization of very narrow mass tolerance windows in the RIC was not required. This study demonstrates that even when the targeted sample preparation from conventional LC-MS/MS is applied to UPLC with full-scan accurate mass MS, false compliant (false negative) results can be obtained when the mass resolving power of the MS is insufficient to separate analyte ions from isobaric co-eluting sample matrix ions. The current trend towards more generic and less selective sample preparation is expected to aggravate this issue further.  相似文献   

19.
Structural information of gas phase complexes of poly(ethylene glycol) (PEG) cationized by one or two different alkali metal ions is inferred from MS and MS/MS experiments performed with an electrospray quadrupole ion trap mass spectrometer. The rationale for selecting PEG was that its sites for cation binding are non-selective with respect to the repeating monomeric unit of the polymer, but there is selectivity with respect to the formation of an inner coordination sphere specific to each metal ion. The dissociation of [M1+ M2+ (EO23)], where EO23 = linear polymer of ethylene oxide, 23 units in length, resulted in loss of one of the alkali metal ions, with preference for loss of the larger cation, with no fragmentation of the PEG backbone for Na, K, Rb, and Cs. Li was not examined in this portion of the study. The selectivity for loss of the larger alkali metal ion was [Na+ K+ (EO23)] to [Na+ (EO23)] + K+ at 100%; [K+ Rb+ (EO23)] to [K+ (EO23)] + Rb+ at 93%; and [Rb+ Cs+ (EO23)] to [Rb+ (Eo23)] + Cs+ at 99%. The resolution of [M+ (EOx)] for x = 20-30 was dependent on the alkali metal ion, with the highest resolution observed for Cs+ and the lowest for Na+. These results are discussed with respect to the packing of the oxygen atoms on PEG (M.W.(avg) = 1000) around an alkali metal ion of different radius, and how this packing leads to an ensemble of unique structures, and therefore mobilities for [M+ (EOx)].  相似文献   

20.
The Orbitrap: a new mass spectrometer   总被引:15,自引:0,他引:15  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号