首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
<正>太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间(如图1所示)。由于太赫兹波直接以其频率范围命名,实际上在低频波段与微波重合,在高频波段与红外重合,与之相应,其研究手段也由电子学理论逐渐过渡为光子学理论。所以太赫兹波是宏观电子学与微观光子学的交叉融合区域。  相似文献   

2.
黄敬国  陆金星  周炜  童劲超  黄志明  褚君浩 《物理学报》2013,62(12):120704-120704
在众多实现太赫兹辐射的方法中, 非线性光学共线差频能够实现高功率、宽波段、连续可调谐的太赫兹波辐射. 理论分析表明, 各向同性磷化镓晶体, 在1064 nm附近波长激光共线差频下具有毫米量级的相干长度, 能够满足高功率宽波段的太赫兹辐射条件.实验证明, 磷化镓晶体共线差频实现高功率宽波段的太赫兹光辐射, 其太赫兹光波长调谐范围为95.9–773.4 μm (0.39–3.13 THz), 最高峰值功率7 W位于频率2.0 THz处.该实验结果与理论计算基本保持一致. 关键词: 太赫兹源 磷化镓 共线差频  相似文献   

3.
超高灵敏度太赫兹超导探测器   总被引:2,自引:0,他引:2       下载免费PDF全文
史生才  李婧  张文  缪巍 《物理学报》2015,64(22):228501-228501
太赫兹(THz)波段一般定义为0.1–10 THz的频率区间, 对应波长范围3 mm–30 μm, 覆盖短毫米波至亚毫米波段(远红外). 尽管人们早已认识到太赫兹波段具有非常重要的科学意义和广泛的应用前景, 但该波段仍然是一个有待全面研究和开发的电磁频率窗口. 因此, 太赫兹波段的天文观测在天体物理及宇宙学研究中具有不可替代的作用, 对于理解宇宙状态和演化具有非常重要的意义. 具有超高灵敏度的太赫兹超导探测器, 已经成为太赫兹波段观测的主要手段. 本文主要阐述了太赫兹超导探测器的基本类型和工作原理, 以及中国科学院紫金山天文台在该领域的主要研究成果和进展.  相似文献   

4.
正1.引言太赫兹(terahertz,THz)波是电磁波谱中位于0.1 THz~10 THz(1 THz=1012Hz)频段的电磁波,对应波长为30~3000μm,因此也被称为亚毫米波。由于缺乏有效的辐射源和探测器,很长时间内对该频段电磁波性质知之甚少,被称为"THz空隙(THz gap)"。随着技术的发展,研究人员发现该频段具有很多独特的性质,比如,低光子能量不会造成样品电离,对非极性样品具有很强的透过率等。因为研究起步较晚,所以应用中缺乏有效的太赫兹功能器件。另外,  相似文献   

5.
研究了p型(100)InAs在不同中心波长飞秒激发光(750—850nm)作用下的太赫兹(THz)波辐射特性.这种太赫兹辐射的光谱性质与光学Dember效应密切相关,飞秒脉冲激发下产生的载流子在InAs表面的Dember场内做加速运动,从而辐射出THz电磁波.实验结果表明:不同中心波长的激发光作用下,InAs表面产生的Dember电场、光生载流子浓度、谷间散射效应以及处于不同状态的载流子数目都发生了变化,因而激发出太赫兹波的功率、振幅、频谱分布和有效谱宽是不同的.这项研究将有利于THz时域光谱技术以及实验  相似文献   

6.
研究了p型(100)InAs在不同中心波长飞秒激发光(750—850nm)作用下的太赫兹(THz)波辐射特性.这种太赫兹辐射的光谱性质与光学Dember效应密切相关,飞秒脉冲激发下产生的载流子在InAs表面的Dember场内做加速运动,从而辐射出THz电磁波.实验结果表明:不同中心波长的激发光作用下,InAs表面产生的Dember电场、光生载流子浓度、谷间散射效应以及处于不同状态的载流子数目都发生了变化,因而激发出太赫兹波的功率、振幅、频谱分布和有效谱宽是不同的.这项研究将有利于THz时域光谱技术以及实验  相似文献   

7.
 太赫兹(THz)辐射通常指的是频率在0·1THz~10THz之间的电磁波,其波段在微波和红外之间,见图1。THz电磁辐射具有非常独特的性质,它可以透过各种生物体、电介质材料以及气相物质,这些介质在THz波段具有丰富的吸收和色散性质,通过测量并分析样品的THz信号便可以获得关于材料中的物质成分和物理、化学以及生物学信息。太赫兹频域在高数据率通信、保密通信、精确制导和隐藏武器探测等方面有重要的应用。因此,近年来这个新兴的研究领域---THz电磁辐射的产生及应用,正在受到各国科学家的极大关注。  相似文献   

8.
采用一个光谱匹配的太赫兹(THz)量子阱探测器(QWP)研究了一激射频率约为41 THz的THz量子级联激光器(QCL)在不同驱动电流下的发射谱,分析了测量得到的发射谱谱型和谱峰位置,根据测量的发射谱估算了太赫兹量子级联激光器发射功率随驱动电流变化的情况,从而得到了THz QCL激射的电流密度范围及其阈值电流密度.文中还研究了THz QWP在不同温度下对THz QCL 激光辐射的响应特性.研究结果表明,THz QWP在表征THz QCL的发射谱方面是一种很好的探测器,并有望成为未来THz通信中的接收装置. 关键词: 太赫兹量子阱探测器 太赫兹量子级联激光器 太赫兹通信 Fourier变换红外光谱  相似文献   

9.
本文首先建立了非磁化等离子体覆盖金属目标的一维模型,然后结合该模型采用辅助差分方程时域有限差分(ADE-FDTD)方法对太赫兹(THz)电磁波在等离子体覆盖层中传播时的衰减系数进行了计算,并根据计算结果分析了等离子体碰撞频率、电子密度以及密度分布对不同频段THz电磁波吸收效果的影响.分析结果表明,等离子体覆盖层对处于太赫兹频段范围内的入射电磁波衰减很小,THz探测技术可以作为对抗等离子体隐身技术的一种有效手段.  相似文献   

10.
树华 《物理》2012,41(9):614
美国科学家发明了一种新的可调太赫兹(THz,1THz=10^12Hz)辐射源,其功率是以前的太赫兹辐射源10,000倍.与大多数其他产生太赫兹辐射的系统不同,该新的可调辐射源采用商用集成电路中所使用的CMOS(互补金属氧化物半导体)技术.研究人员希望他们的新技术可以使太赫兹辐射得到更广泛的应用.  相似文献   

11.
介绍了太赫兹电磁波在毒品检测中的应用研究结果;报道了三种苯丙胺类毒品在太赫兹波段的指纹谱,对隐藏在信封中的毒品进行识别,对粉末状毒品与片状毒品的太赫兹吸收光谱进行了比较,同时也应用THz成像技术开发了毒品识别软件。研究结果表明,将太赫兹电磁波应用于毒品检测是可行的。  相似文献   

12.
张铠云  杜海伟  陈民  盛政明 《物理学报》2012,61(16):160701-160701
基于超短激光脉冲与气体作用通过光场离化电流产生太赫兹(THz)辐射的模型, 研究了用双色激光脉冲的方法产生强THz辐射的优化参数条件. 数值计算表明, 导致THz辐射产生的离化电流主要是由一阶电离过程产生的, 高阶离化对该电流产生的贡献很小. 通过调节基频光与倍频光的配比、相位差都能增大离化电流, 从而可以提高THz辐射振幅. 将激光波长拓展到中红外波段, 也有利于提高离化电流. 此外,改变作用气体的种类也能改变离化电流. 在激光和密度参数相等的情况下, 在氦气中可以产生高于氮气中2倍左右的离化电流.  相似文献   

13.
O441.4 2006043507半导体表面场产生太赫兹电磁波的机理研究=Study onthe mechanism of THz electromagnetic wave from semi-conductor surface field[刊,中]/孙红起(首都师范大学物理系.北京(100037)) ,赵国忠∥现代科学仪器.—2006(2) .—54-58介绍了两种由半导体表面产生THz辐射的物理机制,一种是利用半导体表面的耗尽层电场,另一种是利用半导体表面的Dember电场加速载流子,形成瞬态光电流而辐射出电磁波,对这两种模型的辐射机理进行了深入的讨论。图7参8(严寒)O441.4 2006043508太赫兹光谱和成像应用及展望=Application and outloo…  相似文献   

14.
太赫兹(THz)波,是指频率范围在0.1~10 THz的电磁波,在电磁波谱中处于红外与微波之间。太赫兹波的光子能量相对于可见光更低,1 THz对应的能量大约只有4.14 meV,意味着这将大大减少对生物体内组织器官的辐射而引起的伤害,不会对生物分子产生电离。因此,该波段在基础科学、人体安检、危险品检测、高速通信和医学成像等领域具有重要的潜在应用价值。但在医药和生物探测的应用中,通常需要检测微量的分析物,这就需要更高的灵敏度和检测的准确度。但是现存的检测方法受到太赫兹波强度检测可靠性不高的影响。基于超材料的生物传感可以通过增强局域电磁谐振,实现亚波长分辨,大大提高了传感器的分辨率与灵敏度,引起了人们的广泛关注。超材料是一种人工设计的周期性结构,通过合理设计可以增强局域电磁谐振响应,实现亚波长分辨,大大提高传感器的分辨率与灵敏度。太赫兹超材料传感器为生物传感领域提供了一种新的检测方法,具有灵敏度高、响应速度快、无标记检测等优点。随着微纳加工技术的快速发展,制作超材料太赫兹传感器的成本不断降低,从而在生物医学领域具有非常大的潜在应用价值。基于超材料的太赫兹传感器的研究已成为目前一个非常热门的国际前沿方向。但是关于太赫兹超材料传感器的最新研究进展未见报道,为此通过大量搜集并整理相关资料,综述了太赫兹超材料传感器在各种生物探测场景中的最新应用,分别从医学诊断、食品安全、农药检测等方面展开介绍。最后,对太赫兹超材料在生物传感器的发展和应用前景进行了总结和展望。该研究将为人们充分掌握太赫兹超材料生物传感器的最新应用进展提供重要参考,同时为太赫兹超材料传感器的发展和应用提供方向性的指导。  相似文献   

15.
贾婉丽  施卫  纪卫莉  马德明 《物理学报》2007,56(7):3845-3850
利用光电导体产生太赫兹电磁波(THz波),THz远场辐射波形与光电导体材料的载流子寿命、偏置电场以及触发光有直接关系.用不同方法对低温GaAs(LT-GaAs)和半绝缘GaAs(SI-GaAs)光电导开关辐射的THz电磁波所呈现的双极特性进行了模拟计算.结果表明,LT-GaAs光电导开关辐射THz波呈现双极性的主要原因是光生载流子寿命小于一个THz波产生时间;而光生载流子寿命大于100ps的SI-GaAs光电导开关,在不同的实验条件(不同偏置电场、不同光脉冲能量)下,产生的THz波呈现双极特性的主要原因分别是载流子发生了谷间散射和空间电荷电场屏蔽. 关键词: 光电导开关 THz电磁波 载流子寿命 空间电荷屏蔽  相似文献   

16.
采用一个光谱匹配的太赫兹(THz)量子阱探测器(QWP)研究了一激射频率约为41 THz的THz量子级联激光器(QCL)在不同驱动电流下的发射谱,分析了测量得到的发射谱谱型和谱峰位置,根据测量的发射谱估算了太赫兹量子级联激光器发射功率随驱动电流变化的情况,从而得到了THz QCL激射的电流密度范围及其阈值电流密度.文中还研究了THz QWP在不同温度下对THz QCL 激光辐射的响应特性.研究结果表明,THz QWP在表征THz QCL的发射谱方面是一种很好的探测器,并有望成为未来THz通信中的接收装置.  相似文献   

17.
采用频率差在太赫兹范围的双波长激光器进行泵浦,利用光纤的四波混频效应,得到结构紧凑、频率可调的窄带太赫兹波源。为减小光纤材料对太赫兹波的吸收,采用了表面发射机制。从耦合波理论出发,详细分析了保偏光纤中的四波混频过程,得到了太赫兹波输出功率的解析表达式,并讨论了实现相位匹配的条件。结果表明,太赫兹波功率与泵浦光功率和光纤长度成正比,与太赫兹波长的3次方成反比。当泵浦光峰值功率为1 kW,在6 THz处得到的太赫兹波峰值功率达350 mW,功率转换效率约为0.01%。通过合理设置泵浦波长,可以实现太赫兹辐射在3~8 THz范围内连续调谐。该方案提供了一种新型的高功率、紧凑型的窄带太赫兹辐射源。  相似文献   

18.
THz技术在农产品/食品品质检测中的应用   总被引:3,自引:0,他引:3  
农产品/食品的质量和品质问题越来越受人们关注。探索实际可行的农产品/食品的无损检测与品质评估技术正在成为研究热点。太赫兹(THz)辐射是位于中红外和微波波段之间的一段电磁波,具有非常重要的科学研究和应用价值。长期以来由于缺乏可行的THz波产生方法与探测手段,该波段相关领域的研究滞缓。THz光谱传感和成像技术是THz波的两个主要应用技术。THz光谱检测技术作为一种新型检测技术能够获得传统检测无法获得的信息。近十几年来,THz波用于来研究固、液、气相等各种物质的光电特性、分子内部振动和组成信息,在生物分析、医疗诊断、安全检测、环境控制等领域,THz技术显示出广阔的应用前景。文章介绍了THz波的主要性质、THz波检测技术的特点,论述了THz技术在农产品、食品质量与品质检测中的最新进展及其应用的潜力。  相似文献   

19.
激光等离子体太赫兹辐射源的频率控制   总被引:1,自引:0,他引:1       下载免费PDF全文
李娜  白亚  刘鹏 《物理学报》2016,65(11):110701-110701
实验研究了双色超快强激光场作用于氮气分子束所产生的宽带太赫兹(THz)辐射光谱随等离子体介质的密度和长度的依赖关系, 发现THz辐射的中心频率随等离子体密度提高和长度减小而增大(0.8-1.4 THz), 且谱宽也随之增加(0.78-1.53 THz). 分析和计算表明, 太赫兹光谱的变化由等离子体振荡频率和谱宽决定. 该发现为等离子体宽带太赫兹辐射源的光谱操控提供了新思路.  相似文献   

20.
几种油脂分子太赫兹谱分析技术的基础研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探索脂类有机大分子对太赫兹(THz)辐射的吸收特征,以及使用THz对生物有机大分子实现检测和鉴别,使用透射型太赫兹时域光谱(THz-TDS)系统获得了七种植物油、两种调和油的太赫兹吸收光谱,得到它们的特征吸收参数,对比和分析了它们特征吸收峰的差异。结果表明:脂类有机大分子对THz辐射具有差异性吸收,具备在THz波段的识别基础,可通过THz技术进行鉴别和定性分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号