首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two homologous series of nonionic surfactants, namely Rhom and Haas' tritons (alkylphenol ethoxylates) and Shell dobanols (dobanol ethoxylates) were used to characterize surface properties of ultrafiltration membranes. Static adsorption experiments were carried out to reveal the interactions developed between the membrane and the nonionic surfactant. The surfactant adsorption on the membranes depends on the chemical composition and structure of both the membranes and the surfactants used, as both chemical composition and structure determine the type of interactions controlling this adsorption illustrated on the adsorption isotherms. Distinct different behaviour was exhibited by four types of membranes of the same nominal molecular weight cut-off. The influence of pH and ionic strength was studied also.  相似文献   

2.
Atomic force microscopy was used to characterize an anatase TiO2 surface, prepared by the helical vapor preparation method. The forces between two bare TiO2 surfaces were measured in the presence of water at various pH values. This TiO2 isoelectric point (iep) was characterized by the presence of only a van der Waals attraction and was measured at pH 5.8; this value is similar to that for a rutile TiO2 surface. The adsorption mechanism of a nonionic surfactant molecule to this anatase TiO2 surface was investigated by measuring the forces between two such TiO2 surfaces at their iep pH in the presence of linear dodecanol tetraethoxylate (C12E4), a poly(ethoxylene oxide) n-alkyl ether. C12E4 was seen by the presence of steric forces to adsorb to the uncharged TiO2 surface. For low surfactant concentrations, C12E4 adsorbed with its hydrophobic tail facing the TiO2 substrate, to reduce its entropically unfavorable contacts with water. Additional surfactant adsorption occurred at higher surfactant concentrations by the hydrophobic and hydrophilic interactions between the surfactant tails and heads, respectively, and gave sub-bilayers. A two-step adsorption isotherm was subsequently proposed with four regions: (1) submonolayer, (2) complete monolayer, (3) sub-bilayer, and (4) bilayer. The absence of a long-range repulsive force between the two TiO2 surfaces in the presence of the C12E4 surface aggregates indicated that a C12E4 nonionic surfactant aggregate did not possess charge.  相似文献   

3.
The partitioning behavior of silica particles was investigated in the Triton X-100/dextran/water system. It was found that both electrostatic effects and interactions between phase-component species and the solid surface played important roles in determining the distribution of solids. Silica partition was highly pH-dependent, which was interpreted in terms of the pH dependence of the Triton X-100/SiO(2) interaction and the weak acidity of dextran. The presence of sodium dodecyl sulfate (SDS) moved the particles from the top surfactant-rich phase to the interface and the bottom phase, while dodecyltrimethylammonium bromide (DTAB) had the opposite effect. These trends are attributable to the electrostatic interaction between the charged mixed micelles in the top phase and the particles and to the fact that the ionic surfactants modified the adsorption density of the nonionic surfactant on silica.  相似文献   

4.
Synergy and antagonism between sugar-based surfactants, a group of environmentally benign surfactants, and cationic surfactants and nonionic ethoxylated surfactants have been investigated in this study with solids which adsorbs only one or other when presented alone. Sugar-based n-dodecyl-beta-D-maltoside (DM) does not adsorb on silica by itself. However, in mixtures with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic nonylphenol ethoxylated decyl ether (NP-10), DM adsorbs on silica through hydrophobic interactions. In contrast, although DM does adsorb on alumina, the presence of NP-10 reduces the adsorption of DM as well as that of the total surfactant adsorption. Such synergistic/antagonistic effects of sugar-based n-dodecyl-beta-D-maltoside (DM) in mixtures with other surfactants at solid/liquid interfaces were systematically investigated and some general rules on synergy/antagonism in mixed surfactant systems are identified. These results have implications for designing surfactant combinations for controlled adsorption or prevention of adsorption.  相似文献   

5.
Forces have been measured between silica surfaces with adsorbed surfactants by means of a bimorph surface force apparatus. The surfactants used are the cationic surfactant tetradecyltrimethylammonium bromide (TTAB) and the nonionic surfactant hexakis(ethylene glycol) mono-n-tetradecyl ether (C(14)E(6)) as well as mixtures of these two surfactants. The measurements were made at elevated pH, and the effect of salt was studied. At high pH the glass surface is highly charged, which increases the adsorption of TTAB. Despite the low adsorption generally seen for nonionic surfactants on silica at high pH, addition of C(14)E(6) has a considerable effect on the surface forces between two glass surfaces in a TTAB solution. The barrier force is hardly affected, but the adhesion is reduced remarkably. Also, addition of salt decreases the adhesion, but increases the barrier force. In the presence of salt, addition of C(14)E(6) also increases the thickness of the adsorbed layer. The force barrier height is also shown to be related to literature values for surface pressure data in these systems.  相似文献   

6.
The effects of the adsorption of a simple dicarboxylate low molecular weight organic anion, maleate, on the dissolution of a model aluminum oxide, corundum (alpha-Al2O3), have been examined over a range of different maleate concentrations (0.125-5.0 mM) and pH conditions (2-10). In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic measurements indicate that maleate binds predominantly as an outer-sphere, fully deprotonated complex ([triple bond]AlOH2+ -Mal2-) at the corundum surface over the entire range of maleate concentrations and pH conditions investigated. In accordance with the ATR-FTIR findings, macroscopic adsorption data can be modeled as a function of maleate concentration and pH using an extended constant capacitance approach and a single [triple bond]AlOH2+ -Mal2- species. Outer-sphere adsorption of maleate is found to significantly reduce the protolytic dissolution rate of corundum under acidic conditions (pH < 5). A likely mechanism involves steric protection of dissolution-active surface sites, whereby strong outer-sphere interactions with maleate hinder attack on those surface sites by dissolution-promoting species.  相似文献   

7.
Adsorption of cationic surfactant dodecylpyridinium bromide and nonionic surfactant Triton X-100 from aqueous solutions on the surface of SiO2 particles is studied at various pH values (3.6, 6.5, and 10). The data on the adsorption are compared with the data on the wetting of quartz plates by solutions of these surfactants. Adsorption of both studied surfactants on the SiO2 surface is greatly dependent on solution pH. The mechanism of adsorption of the cationic surfactant is shown to be changed when passing to the alkaline pH region. Triton X-100 does not demonstrate a substantial change in the adsorption mechanism in the pH range from 3.6 to 10.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 2, 2005, pp. 274–280.Original Russian Text Copyright © 2005 by Kharitonova, Ivanova, Summ.  相似文献   

8.
Effective plastic film deinking could permit the reuse of recycled polymer to produce clear film, reduce solid waste for landfills, reduce raw material demand for polymer production, and aid process economics. In this study, the deinking of a commercial polyethylene film printed with water-based ink was studied using surfactants in the presence of hardness ions (calcium ions) at various pH levels. The electrostatic properties of ink particles in a washing bath were also investigated. Synthetic anionic surfactant or fatty acid soap in the presence of calcium ions at alkaline pH levels was found to be nearly as effective at deinking as cationic, nonionic, or amphoteric surfactants alone. However, adding calcium ions decreases the deinking effectiveness of cationic, nonionic, and amphoteric surfactants. Increasing the length of the ionic surfactant hydrophobe enhances deinking. Zeta potential measurements showed that water-based ink particles in water reach the point of zero charge (PZC) at a pH of about 3.6, above which ink particles are negatively charged, so cationic surfactant tends to adsorb better on the ink than anionic surfactant above the PZC in the absence of calcium. As the cationic surfactant concentration is varied between 0.005 and 25 mM, the zeta potential of the ink particles reverses from negative to positive owing to adsorption of cationic surfactant. For anionic surfactants, added calcium probably forms a bridge between the negatively charged ink and the negatively charged surfactant head groups, which synergizes adsorption of the surfactant and aids deinking. In contrast, calcium competes for adsorption sites with cationic and nonionic surfactants, which inhibits deinking. All the surfactants studied here disperse ink particles effectively in the washing bath above pH 3 except for the ethoxylated amine surfactant.  相似文献   

9.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

10.
We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC < CSAC . This implies that the chemical potential that the surfactant needs to adsorb is higher than its maximum chemical potential, and hence, the surfactant will not adsorb. One of the main goals of our model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.  相似文献   

11.
Nonionic surfactants are found in many wool processing operations. This study shows that X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) are useful tools in the investigation of the interaction of nonionic surfactants and the wool fibre surface. Results confirm that nonionic surfactants such as TN450 and Teric N4 will adsorb onto the fibre surface with the bound lipid intact. Even after extensive rinsing, surfactant molecules are present suggesting that these molecules bind strongly to the fibre surface. In addition, the nature of the fibre surface is shown to influence the adsorption of nonionic surfactant. The removal of the bound lipid from the fibre surface facilitates the adsorption process and the subsequent surfactant treatment enhances the fibre’s wettability. These results have important practical implications. Also it is shown that the surfactant is not removed by extensive rinsing.  相似文献   

12.
Sugar-based surfactants can be synthesized from renewable materials and are environmentally benign. They have some unique solution and interfacial properties and have potential applications in a wide variety of processes, and there is a need for corresponding information on their behavior at various interfaces. In this study, co-adsorption of nonionic sugar-based n-dodecyl-beta-D-maltoside (DM) and anionic sodium dodecyl sulfate (SDS) on alumina was studied as a function of mixing ratios and solution pHs. It is found that at solid-liquid interface, depending on the solid type and the solution conditions, there are various interactions that dictate synergy or antagonism. At pH 6 where alumina is positively charged, marked synergistic effects between DM and SDS were observed, while at pH 11 where alumina is negatively charged, SDS shows antagonistic adsorption effects with DM. The ratios of surfactant components on solids change as a function of surfactant structure and concentrations as well, indicating various interactions at solid/liquid interface under different conditions that can be utilized for many industrial processes.  相似文献   

13.
Adsorption of nonionic surfactant micelles onto ultrafiltration (UF), membranes was studied. Two homologous series of nonionic surfactants, namely, Tritons (alkylphenol ethoxylates) and Neodols (alcohol ethoxylates), were used to characterize surface properties of two polymeric ultrafiltration membranes with 20,000 nominal cutoff. Particularly, a cellulose acetate and a polysulfone membrane were investigated. Static adsorption experiments were carried out using surfactant solutions at concentrations above their critical micelle concentration. The characterization of surface properties of UF membranes was based on the adsorption behavior of surfactant species. The adsorption extent on UF membranes was affected by the hydrophobicity-to-hydrophilicity ratio mainly determining the interactions developed at the membrane-surfactant species interface. Adsorption experimental data seem generally to fit the Langmuir isotherm model. Atomic force microscopy was used to examine the alteration of the top membrane surface morphology.  相似文献   

14.
The adsorption of pure nonionic alkylethoxylated surfactants of the C12Enseries at silica/water interface has been determined using a very precise HPLC technique. The number of ethoxylated groups was varied from 2 to 9. The adsorption isotherms were constructed with special attention to the very low surface coverage domain. It is shown that at very low concentration, the adsorption amounts are higher as the number of ethoxylated groups increases but the reverse trend is found at higher surfactant concentration and above the critical micelle concentration. It is shown that this behavior is the consequence of the interplay of the primary and secondary adsorption mechanisms depending upon the length of the ethoxylated chain. The maximum adsorption quantities is not a linear function of the number of ethoxylated groups. This and other observations confirm the viewpoint that the behavior of nonionic surfactant aggregates adsorbed at a hydrophilic surface carries many similarities with the properties of this class of nonionic surfactant aggregates in bulk aqueous solutions.  相似文献   

15.
The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.  相似文献   

16.
The effects of the adsorption of pyromellitate, an analogue for natural organic matter, on the dissolution behavior of corundum (alpha-Al2O3) have been examined over a wide range of pyromellitate concentrations (0-2.5 mM) and pH conditions (2-10). The adsorption modes of pyromellitate on corundum have first been examined using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and are shown to be dominated by a fully deprotonated, outer-sphere pyromellitate species ([triple bond]AlOH2+. . .Pyr4-) at pH >/= 5.0. At lower pH conditions, however, an additional protonated outer-sphere species ([triple bond]AlOH2+. . .H2Pyr2-) and an inner-sphere species are also evident. In accordance with the ATR-FTIR findings, modeling of macroscopic pyromellitate adsorption data using an extended constant capacitance treatment was possible using two outer-sphere ([triple bond]AlOH2+. . .Pyr4- and [triple bond]AlOH2+. . .H2Pyr2-) and one inner-sphere ([triple bond]AlPyr3-) adsorbed pyromellitate species. The presence of adsorbed pyromellitate strongly inhibited the dissolution of corundum under acidic (pH < 5) conditions, consistent with a mechanism previously proposed by Johnson et al. whereby outer-spherically adsorbed Pyr4- species sterically protect dissolution-active surface sites from attack by dissolution-promoting species such as protons. A reduction in the protolytic dissolution rate of corundum results. A reference Suwannee River fulvic acid, which also adsorbs to aluminum (oxyhydr)oxide surfaces in a predominantly outer-sphere manner, was similarly shown to strongly inhibit the dissolution of corundum at pH = 3.  相似文献   

17.
The mixed adsorption of the nonionic polymer poly(vinylpyrrolidone) (PVP) and the anionic surfactant sodium dodecylbenzenesulfonate (SDBS) on kaolinite has been studied. Both components adsorb from their mixture onto the clay mineral. The overall adsorption process is sensitive to the pH, the electrolyte concentration, and the amounts of polymer and surfactant. Interpretation of the experimental data addresses also the patchwise heterogeneous nature of the clay surface. In the absence of PVP, SDBS adsorbs on kaolinite by electrostatic and hydrophobic interactions. However, when PVP is present, surfactant adsorption at 10(-2) M NaCl is mainly driven by charge compensation of the edges. The adsorption of PVP from the mixture shows similar behavior under different conditions. Three regions can be distinguished based on the changing charge of polymer-surfactant complexes in solutions with increasing SDBS concentration. At low surfactant content, PVP adsorbs by hydrogen bonding and hydrophobic interactions, whereas electrostatic interactions dominate at higher surfactant concentrations. Over the entire surfactant concentration range, polymer-surfactant aggregates are present at the edges. The composition of these surface complexes differs from that in solution and is controlled by the surface charge.  相似文献   

18.
The interaction between silver nanoparticles (Ag NPs) of different surface charge and surfactants relevant to the laundry cycle has been investigated to understand changes in speciation, both in and during transport from the washing machine. Ag NPs were synthesized to exhibit either a positive or a negative surface charge in solution conditions relevant for the laundry cycle (pH 10 and pH 7). These particles were characterized in terms of size and surface charge and compared to commercially laser ablated Ag NPs. The surfactants included anionic sodium dodecylbenzenesulfonate (LAS), cationic dodecyltrimethylammoniumchloride (DTAC) and nonionic Berol 266 (Berol). Surfactant-Ag NP interactions were studied by means of dynamic light scattering, Raman spectroscopy, zeta potential, and Quartz Crystal Microbalance. Mixed bilayers of CTAB and LAS were formed through a co-operative adsorption process on positively charged Ag NPs with pre-adsorbed CTAB, resulting in charge reversal from positive to negative zeta potentials. Adsorption of DTAC on negatively charged synthesized Ag NPs and negatively charged commercial Ag NPs resulted in bilayer formation and charge reversal. Weak interactions were observed for nonionic Berol with all Ag NPs via hydrophobic interactions, which resulted in decreased zeta potentials for Berol concentrations above its critical micelle concentration. Differences in particle size were essentially not affected by surfactant adsorption, as the surfactant layer thicknesses did not exceed more than a few nanometers. The surfactant interaction with the Ag NP surface was shown to be reversible, an observation of particular importance for hazard and environmental risk assessments.  相似文献   

19.
In acute lung injuries, inactivating agents may interfere with transfer (adsorption) of pulmonary surfactants to the interface between air and the aqueous layer that coats the interior of alveoli. Some ionic and nonionic polymers reduce surfactant inactivation in vitro and in vivo. In this study, we tested directly whether an ionic polymer, hyaluronan, or a nonionic polymer, polyethylene glycol, enhanced adsorption of a surfactant used clinically. We used three different methods of measuring adsorption in vitro: a modified pulsating bubble surfactometer; a King/Clements device; and a spreading trough. In addition we measured the effects of both polymers on surfactant turbidity, using this assay as a nonspecific index of aggregation. We found that both hyaluronan and polyethylene glycol significantly increased the rate and degree of surfactant material adsorbed to the surface in all three assays. Hyaluronan was effective in lower concentrations (20-fold) than polyethylene glycol and, unlike polyethylene glycol, hyaluronan did not increase apparent aggregation of surfactant. Surfactant adsorption in the presence of serum was also enhanced by both polymers regardless of whether hyaluronan or polyethylene glycol was included with serum in the subphase or added to the surfactant applied to the surface. Therefore, endogenous polymers in the alveolar subphase, or exogenous polymers added to surfactant used as therapy, may both be important for reducing inactivation of surfactant that occurs with various lung injuries.  相似文献   

20.
We propose a direct method to measure the equilibrium and dynamic surface properties of surfactant solutions with very low critical micellar concentrations (CMC) using a pendant drop tensiometer. We studied solutions of the nonionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) and of the ionic surfactant hexadecyl trimethyl ammonium bromide (CTAB) with concentrated sodium bromide (NaBr). The variation of the surface tension as a function of surface concentration is obtained easily without the need for complex models and compares well with the result obtained using the Gibbs adsorption equation. The time-dependent surface concentration of each surfactant was also measured, and the adsorption process was found to be diffusion-controlled. The diffusion coefficients of the two surfactants can be extracted from the data and were found in very good agreement with literature values, further validating the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号