首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemilabile chiral C2 symmetrical bidentate substituted amide ligands (1R,2R)-5(a-d) and (1S,2S)-6(a-d) were synthesized in quantitative yield from (1R,2R)-(+)-3-methylenecyclo-propane-1,2-dicarboxylic acid (1R,2R)-3 and (1S,2S)-(-)-3-methylene-cyclopropane-1,2-dicarboxylic acid (1S,2S)-3, in two steps, respectively. The chiral Feist's acids (1R,2R)-3 and (1S,2S)-3 were obtained in good isomeric purity by resolution of trans-(±)-3-methylene-cyclopropane-1,2-dicarboxylic acid from an 8:2 mixture of tert-butanol and water, using (R)-(+)-α-methylbenzyl amine as a chiral reagent. This process is reproducible on a large scale. All these new synthesized chiral ligands were characterized by 1H-NMR, 13C-NMR, IR, and mass spectrometry, as well as elemental analysis and their specific rotations were measured. These new classes of C2 symmetric chiral bisamide ligands could be of special interest in asymmetric transformations.  相似文献   

2.
(1R,2S)-Norephedrine has been employed in the synthesis of a novel 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazin-2-one via reductive alkylation with acetone, N-nitrosation, reduction, and cyclization. The oxadiazinone was treated with either propionyl chloride or 3-thiophenylpropionyl chloride to afford the corresponding N(3)-acylated oxadiazinones 9a and 9b, respectively. X-ray crystallographic analysis of the N(3)-thiophenylpropionyl oxadiazinone 9b revealed that the C(2)-urethane carbonyl and the N(3)-carbonyl are arranged in an anti-periplanar conformation. The oxadiazinones were subsequently applied in the titanium-mediated asymmetric aldol addition reaction by treatment with titanium tetrachloride, triethylamine, and a variety of aldehydes at 0 degrees C. The aldol adducts 10a-i and 11a,b were found to have diastereoselectivities ranging from 8:1 to >99:1 favoring the formation of the non-Evans syn configuration. The absolute stereochemistry of the adduct 10a was determined by acid hydrolysis. This process afforded the N(4)-isopropyloxadiazinone 8 and (2S,3S)-3-hydroxy-2-methyl-3-phenylpropanoic acid 14 in >/=95% enantiomeric excess.  相似文献   

3.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   

4.
1 INTRODUCTION Polythiotungstate complexes can be prepared from the protonation of one sulfur atom of [WS4]2- and subsequent intramolecular redox reactions[1,2]. For example, [(S)2W(m-S)2W(m-S)2W(S)2]2 was formed by the acidification of a diluted aqueous solution of (NH4)2[WS4] with dilute H2SO4[3]. When a diluted aqueous solution containing [WS4]2 was acidified with 0.1mol/L HCl, [(S)2W(m-S)2(O)- W(H2O)(m-S)2W(S)2]2 was formed[4]. [(S)2W- (m-S)2(S)W(m-S)2W(S)2]2 was form…  相似文献   

5.
The reaction of [CpRu(PPh(3))(2)Cl] (1) with half an equivalent of P(4) or P(4)S(3) in the presence of AgCF(3)SO(3) as chloride scavenger affords the stable dimetal complexes [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(4))][CF(3)SO(3)](2).3 CH(2)Cl(2) (2) and [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(apical)-P(basal)-P(4)S(3))][CF(3)SO(3)](2).0.5 C(7)H(8) (3), in which the tetrahedral P(4) and mixed-cage P(4)S(3) molecules are respectively bound to two CpRu(PPh(3))(2) fragments through two phosphorus atoms. The coordinated cage molecules, at variance with the free ligands, readily react with an excess of water in THF under mild conditions. Among the hydrolysis products, the new, remarkably stable complexes [{CpRu(PPh(3))(2)}(2)(micro,eta(1:1)-P(2)H(4))][CF(3)SO(3)](2) (4) and [CpRu(PPh(3))(2)(eta(1)-PH(2)SH)]CF(3)SO(3) (8) were isolated. In the former, diphosphane, P(2)H(4), is coordinated to two CpRu(PPh(3))(2) fragments, and in the latter thiophosphinous acid, H(2)PSH, is coordinated to the metal centre through the phosphorus atom. All compounds were characterised by elemental analyses and IR and NMR spectroscopy. The crystal structures of 2, 3, 4 and 8 were determined by X-ray diffraction.  相似文献   

6.
p-Cymene (1) was metabolized in rabbits and the following four optically active metabolites, 2-(p-tolyl)-1-propanol (3': R/S = 65:35), 2-(p-tolyl)propanoic acid (5': R/S = 0:100), p-(2-hydroxy-1-methylethyl)benzoic acid (6': R/S = 91:9) and p-(1-carboxyethyl)benzoic acid (8': R/S = 30:70), were isolated in addition to three optically inactive metabolites, 2-(p-tolyl)-2-propanol (2), p-isopropylbenzoic acid (4'), and p-(1-hydroxy-1-methylethyl)benzoic acid (7'). The presumed metabolic pathways of p-cymene in rabbits were confirmed by the administration of the intermediate metabolites (2, 3', 4', and 5'). The enantiomeric ratios of the metabolites, 3' and 6', suggested that omega-hydroxylations of the isopropyl group in 1 and 4' occurred preferentially at the pro-S methyl group. In the metabolism of 1, the S-isomers are predominant in the propanoic acid derivatives, but the R-isomers are rich in the propanol derivatives. It is of interest that the metabolism of 4', however, produced predominantly the corresponding propanol derivative (6'; R/S = 91:9) and propanoic acid derivative (8'; R/S = 80:20) possessing the same R-configuration. Some optically active p-cymene derivatives were also synthesized as standard compounds.  相似文献   

7.
<正> Both of the title complexes were produced by oxidative decarbony-lation of NH4 CMO (CO)5I]. The complexes CMo(S2CNC4H8)4]I3 ?C7H8(1) and Mo2S2O2 (S2CNC4H8)2(2) both crystallize in triclinic, space group P1 with cell dimensions for (1) : a=13. 554(4), b=13. 620(4), c= 13. 058 (4) A , α=95. 58 (3), β=105. 38(2), γ=115. 49(2)°,V = 2035(1) A3, Z=2, Dc=1. 89 g. cm-3, final R=0. 054 and Rw = 0. 062 for 2926 observed reflections; and for (2): a = 8.730(2), b=16.592(6), c = 6. 688(2)A, α=97. 67(3), β=98. 10(2), γ=80. 26(2)% V = 939. 2(5) A3, Z = 2, Dc = 2. 05 g. cm-3, final R = 0. 038 and Rw = 0. 046 for 2248 observed reflections. The Mo(V) atom is bonded to eight S atoms in distorted dodecahedron for (1). The Mo atoms in compound (2) are bridged by two S atoms and each Mo atom is coordinated by two S atoms from S2CNC4H8 and one O atom to form distorted tetragonal pyramid.  相似文献   

8.
Although terminal chalcogeno ligands are well known for the group 5 and 6 transition metals, they are highly unusual for the oxophilic group 4 metals and unknown so far for the lanthanides or actinides. Cs3UP2S8, is the first actinide compound containing a terminal M=S group. It was synthesized by reacting uranium metal, Cs2S, S, and P2S5 in a 4:1:8:3 ratio at 700 °C in an eutectic LiCl/CsCl mixture. The crystal structure was determined by single‐crystal X‐ray diffraction techniques. Cs3UP2S8 crystallizes in the rhombohedral space group R$\bar{3}$ [a = 15.5217(8) Å; c = 35.132(2) Å, V = 8305.0(8) Å3, Z = 18]. The crystal structure is based on a tetrahedral network type, wherein the uranium atoms are coordinated by a unusual sulfido moiety and thiophosphate groups in a pseudo‐tetrahedral fashion. The U=S distance of 2.635(3) Å observed in the sulfide moiety is approx. 0.2 Å shorter than the average U–S single bond length, indicating a double‐bond type character.  相似文献   

9.
The synthesis of (2R,3R) and (2S,3S) dideuteriosuccinic acid in 63 ± 10% enantiomeric excess by reduction of the half acid ester of ethyl fumarate from (R) and (S) BINAP ruthenium (II) diacetate complex, respectively, is reported. (2R,3R) and (2S,3S)-Dideuteriosuccinic acid has also been prepared from (R)-BINAP ruthenium (II) dicarboxylate complex directly in similar optical purity by reversing the sequence of introduction of the isotopic label.  相似文献   

10.
We describe the practical synthetic route for (2S)-7-methoxy-1,2,3,4-tetrahydro-2-naphthylamine 1(2S)-2-amino-7-methoxytetraline; (S)-AMT]. (2R)-2-(3-Methoxybenzyl)succinic acid [(R)-1] was obtained by the optical resolution of 2-(3-methoxybenzyl)succinic acid (1) as the salt of (1R,2S)-2-(benzylamino)cyclohexylmethanol (7), and (R)-1 was converted to the optically active (2S)-7-methoxy-1,2,3,4-tetrahydro-2-naphthoic acid [(S)-2] by the intramolecular Friedel-Crafts reaction followed by catalytic hydrogenation. (S)-AMT was obtained from the acid (S)-2 by Hofmann rearrangement without racemization.  相似文献   

11.
1INTRODUCTION'TheclusterscontainingMo--SorW--Shavebeenstudiedextensivelyfortheirimportantapplicationsinmanyfieldsll~43.Alongwith.thedevelopmentofrationaldesignedsynthesissuchasthe"UnitConstruction"utilizingwell-definedactivecom-poundsasbuildingblocks,binuclearsulfidecompoundsusedtodesignnewclustershavebeenpaidattentiontots'6itandalotofcompoundscontainingiM,S.O.--.J' (M=MoorW)coreshavebeenprepared['i.Inthispaper,thefirstexamplpofbitung-stencompoundwithtdtZ--ligands(Et.N),W,S.(tdt),,…  相似文献   

12.
Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N(2)-dG adducts in DNA. When placed opposite dC in the 5'-CpG-3' sequence, the (6S,8R,11S) diastereomer forms a N(2)-dG:N(2)-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687-5700]. We refined its structure in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3'·5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' [X(7) is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N(2)-dG adduct, and Y(19) is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N(2)-dG adduct; the cross-link is in the 5'-CpG-3' sequence]. Introduction of (13)C at the C8 carbon of the cross-link revealed one (13)C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y(19) H1', C(20) H1', and C(20) H4', orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y(19) H1', orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y(19)N(2)H and X(7) N1H protons, respectively. A strong H8→H11 NOE and no (3)J((13)C→H) coupling for the (13)C8-O-C11-H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N(2)-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X(7)N(2) and Y(19)N(2) atoms were in the gauche conformation with respect to the linkage, maintaining Watson-Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C(20)O(2) of the 5'-neighbor base pair G(5)·C(20) and O11H with C(18)O(2) of X(7)·C(18). These may, in part, explain the stability of this cross-link and the stereochemical preference for the (6S,8R,11S) configuration.  相似文献   

13.
利用非对映异构体盐在溶剂中溶解度的不同,以(1S,2R)-1-氨基-2-茚醇(1)为手性拆分剂,拆分四氢糠酸[(RS)-THFA, (RS)-2]获得高光学纯的(S)-2,其结构经1H NMR, 13C NMR和HPLC确证。探究了不同溶剂量和投料比对拆分效果的影响。结果表明较佳拆分条件为:以4-甲基-2-戊酮(3)作溶剂,n[(RS)-2]: n(1)=2.2 : 1,一次拆分得91.7% ee (S)-2;再以n[91.7% ee (S)-2]: n(1)=6 : 5进行二次拆分得99.0% ee (S)-2。拆分剂的回收率提高至92.0%,同时对拆分母液中的非目标对映体成功地进行消旋化,回收率为89.0%,实现了四氢糠酸的循环拆分。  相似文献   

14.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

15.
A coordinatively unsaturated dinuclear iron(II) complex of bulky thiolates, [(TipS)Fe(micro-SDmp)]2 (1; Tip = 2,4,6-(i)Pr(3)C(6)H(2), Dmp = 2,6-(mesityl)(2)C(6)H(3)), was synthesized from stepwise reactions of Fe{N(SiMe(3))2}2 with 1 equiv of HSDmp and then with 1 equiv of HSTip. Complex 1 was found to react with elemental sulfur (S8) in toluene to generate a new class of [8Fe-7S] cluster, [(DmpS)Fe(4)S(3)]2(micro-SDmp)2(micro-STip)(micro(6)-S) (2). The cluster 2 was also produced from one-pot reactions of Fe{N(SiMe(3))2}2 + HSDmp + HSTip + S8 (8:6:10:7/8) and Fe3{N(SiMe(3))2}2(micro-STip)4 + HSDmp + S8 (8/3:16/3:7/8), where another [8Fe-7S] cluster, [(TipS)Fe(4)S(3)]2(micro-SDmp)2{micro-N(SiMe(3))2}(micro(6)-S) (3), was also found as a minor byproduct. In either of the clusters, two Fe(4)S(3) incomplete cubane units are connected by three anionic ligands, namely three thiolate S atoms for 2 or two thiolate S atoms and one amide N atom for 3, and one hexa-coordinate S atom resides at the center of the [8Fe-7S] core. They have a common Fe(II)(5)Fe(III)3 oxidation states, and an S = 1/2 ground spin state was indicated by rhombic EPR signals at 10 K with g = 2.19, 2.07, and 1.96 for 2 and g = 2.13, 2.06, and 1.93 for 3. The structural relevance of clusters 2 and 3 to P-cluster, FeMo-co, and FeFe-co of nitrogenases is discussed.  相似文献   

16.
(R(S))-1 (85% ee) was prepared by utilizing a porcin pancreatic lipase-promoted hydrolysis of sulfinyldiacetic acid dimethyl ester (8) which was derived from thiodiacetic acid (7). (R(S))-1 (99% ee) and (S(S))-1 (99% ee) were readily obtained by methanolysis of (R(S),S)-12 and (S(S),S)-12 with MeONa in MeOH. (R(S),S)-12 and (S(S),S)-12 were furnished by chromatographic separation of the diastereomeric mixture, obtained by oxidation of thiodiacetic mono-carboxylic acid (11) with 30% H2O2 followed by dehydrative condensation of the resultant sulfinyldiacetic mono-carboxylic acid with 4(S)-isopropyl-1,3-thiazolidine-2-thione. (R(S))-1 (99% ee) was successively treated with (TMS)2NLi, Ac2O, and TMSOTf to give a major chiral-3 product in 75% ee and in a highly chemoselective manner (chiral-3:chiral-2=93:7).  相似文献   

17.
The first chiron approach from d-glucose for the total synthesis of (2 S,3 R)-3-hydroxypipecolic acid (-)-1a and (2R,3R)-3-hydroxy-2-hydroxymethylpiperidine (-)-2a is reported. The synthetic pathway involves conversion of d-glucose into 3-azidopentodialdose (5) followed by the Wittig olefination and reduction to give the piperidine ring skeleton (8) with a sugar appendage that on cleavage of an anomeric carbon followed by oxidation gives (-)-1a which on reduction affords (-)-2a.  相似文献   

18.
[structure: see text] Synthesis of the unusual amino acid (2S,3S,8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid (Adda), a unit of numerous cyanobacterial toxins, is described. Construction of the target molecule was achieved in 13 steps with an overall yield of 40%. The work is highlighted by a novel one-pot transformation from isoxazolidin-5-one intermediate 6 to the final product, a step that can also be used to form beta-amino acids.  相似文献   

19.
采用[2+1+1]的设计合成模式, 以二核化合物[Mo~2S~4(TDT)~2](Me~4N)~2(1,TDT=S~2C~6H~3CH~3^2^-)为起始物,与Ag(PPh~3)~3(NO~3)反应,首次合成[Mo~2Ag~2S~4](TDT)~2(PPh~3)~2·CH~2Cl~2(2)的类立方烷异四核簇合物.文中报道了该化合物的晶体结构,红外光谱,紫外可见光谱和电化学研究结果, 以此簇合物和过量的Cu(PPh~3)~2dtp[dtp=S~2P(OEt)~2]反应发现金属Ag可被Cu取代,形成其同系物[Mo~2Cu~2S~4](TDT)~2(PPh~3)~2.这是迄今研究较少的原子簇反应类型.化合物的结晶学参数如下:单斜晶系,空间群:P2~1/n,晶胞参数:a=1.7202(4)nm,b=1.7632(3)nm,c=1.9033(8)nm.β=99.24(3)°,V=5.698(3)nm^3,Z=4,D~c=1.69g/cm^3.对于6158个衍射,最终结构偏离因子R=0.040,R~W=0.048  相似文献   

20.
The reaction of Zn(II) and Co(II) with thiosalicylic acid, o-HSC6H4COOH, and its methyl ester has led to the following complexes: [Zn(SC6H4COO)] (1), (NEt4)Na[Zn(SC6H4COO)2].H2O (2), (NEt4)2Na[Co(SC6H4COO)3].2H2O (3), (NEt4)3Na3[(Co(SC6H4COO)3)2].6MeOH (4), [Zn(SC6H4COOMe)2] (5), and [Co(SC6H4COOMe)n], n = 2 (6), 3 (7). These ligands have not allowed stabilization of Co(II) in a sulfur-oxygen coordination environment. The structures of complexes 2-4 and 7 have been determined crystallographically. Those of 2-4 show significant similarities such as the behavior of the -SC6H4COO- anion as chelating ligand and the involvement of sodium ions as a structural element. Thus, the structure of the [Na(Zn(SC6H4COO)2)(H2O)]- anion in complex 2 can be described as infinite chains of consecutive [Zn(SC6H4COO)2]2- metalloligands linked by [Na(H2O)]+ centers, that of the [Na(Co(SC6H4COO)3(H2O)2)]2(4-) anion in 3 as a centrosymmetric tetranuclear Co2Na2 dimer with a (CoIII(S[symbol: see text]O)3)Na(mu-H2O)2Na(CoIII(S[symbol: see text]O)3) core, and that of the pentanuclear [Na3(Co(SC6H4COO)3)2(MeOH)6]3- anion in 4 as two dinuclear [(CoIII(S[symbol: see text]O)3)Na(MeOH)3] fragments linked to a central sodium ion, which appears to be the first structurally characterized example of a NaS6 site. The use of the o-HSC6H4COOMe ligand allowed the synthesis of [Co(SC6H4COOMe)2] (6) but not its full structural characterization. Instead, [Co(SC6H4COOMe)3] (7) was obtained and structurally characterized. It consists of mononuclear molecules containing an octahedral CoIIIS3O3 core. The selection of 2,2-diphenyl-2-mercaptoacetic acid as ligand with reductive properties has afforded the first mononuclear complex containing a CoIIS2O2 core and thus an unprecedented model for Co(II)-substituted metalloproteins containing tetrahedral MS2O2 active sites. The synthesis and full structural characterization of the isostructural complexes (NEt4)2[Zn(Ph2C(S)COO)2] (8) and (NEt4)2[Co(Ph2C(S)COO)2] (9) show that they consist of discrete [M(Ph2C(S)COO)2]2- anions, with a distorted tetrahedral coordination about the metal. In addition, the stability conferred by the ligand on the CoIIS2O2 core has allowed its characterization in solution by paramagnetic 1D and 2D 1H NMR studies. The longitudinal relaxation times of the hyperfine-shifted resonances and NOESY spectra have led to the assignment of all resonances of the cobalt complex and confirmed that it maintains its tetrahedral geometry in solution. Magnetic measurements (2-300 K) for complex 9 and 9.2H2O are in good agreement with distorted tetrahedral and octahedral environments, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号