首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 982 毫秒
1.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

2.
Herein, we report the synthesis, structural investigation, and magnetic and photophysical properties of a series of 13 [Zn(II)Ln(III)] heterodinuclear complexes, which have been obtained employing a Schiff-base compartmental ligand derived from o-vanillin [H(2)valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)]. The complexes have been synthesized starting from the [Zn(valpn)(H(2)O)] mononuclear compound and the corresponding lanthanide nitrates. The crystallographic investigation indicated two structural types: the first one, [Zn(H(2)O)(valpn)Ln(III)(O(2)NO)(3)], contains 10-coordinated Ln(III) ions, while in the second one, [Zn(ONO(2))(valpn)Ln(III)(H(2)O)(O(2)NO)(2)]·2H(2)O, the rare earth ions are nine-coordinated. The Zn(II) ions always display a square-pyramidal geometry. The first structural type encompasses the larger Ln ions (4f(0)-4f(9)), while the second is found for the smaller ions (4f(8)-4f(11)). The dysprosium derivative crystallizes in both forms. Luminescence studies for the heterodinuclear compounds containing Nd(III), Sm(III), Tb(III), Dy(III), and Yb(III) revealed that the [Zn(valpn)(H(2)O)] moiety acts as an antenna. The magnetic properties for the paramagnetic [Zn(II)Ln(III)] complexes have been investigated.  相似文献   

3.
Seven acetate-diphenoxo triply bridged M(II)-Ln(III) complexes (M(II) = Ni(II) and Ln(III) = Gd, Tb, Ho, Er, and Y; M(II) = Zn(II) and Ln(III) = Ho(III) and Er(III)) of formula [M(μ-L)(μ-OAc)Ln(NO(3))(2)], one nitrate-diphenoxo triply bridged Ni(II)-Tb(III) complex, [Ni(μ-L)(μ-NO(3))Tb(NO(3))(2)]·2CH(3)OH, and two diphenoxo doubly bridged Ni(II)-Ln(III) complexes (Ln(III) = Eu, Gd) of formula [Ni(H(2)O)(μ-L)Ln(NO(3))(3)]·2CH(3)OH have been prepared in one pot reaction from the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H(2)L). Moreover, Ni(II)-Ln(III) complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the M(μ-O(2))Ln bridging fragment of ~22°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of ~13° and ~2°, respectively. All Ni(II)-Ln(III) complexes exhibit ferromagnetic interactions between Ni(II) and Ln(III) ions and, in the case of the Gd(III) complexes, the J(NiGd) coupling increases weakly but significantly with the planarity of the M-(O)(2)-Gd bridging fragment and with the increase of the Ni-O-Gd angle. Density functional theory (DFT) theoretical calculations on the Ni(II)Gd(III) complexes and model compounds support these magneto-structural correlations as well as the experimental J(NiGd) values, which were found to be ~1.38 and ~2.1 cm(-1) for the folded [Ni(μ-L)(μ-OAc)Gd(NO(3))(2)] and planar [Ni(H(2)O)(μ-L)Gd(NO(3))(3)]·2CH(3)OH complexes, respectively. The Ni(II)Dy(III) complexes exhibit slow relaxation of the magnetization with Δ/k(B) energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN, respectively.  相似文献   

4.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

5.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

6.
Three new aryl amide type ligands, N-(phenyl)-2-(quinolin-8-yloxy)acetamide (L(1)), N-(benzyl)-2-(quinolin-8-yloxy)acetamide (L(2)) and N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide (L(3)) were synthesized. With these ligands, three series of lanthanide(III) complexes were prepared: [Ln(L(1))(2)(NO(3))(2)]NO(3), [Ln(L(2))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O and [Ln(L(3))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd). The complexes were characterized by the elemental analyses, molar conductivity, (1)H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of complexes in the solid state and the triplet state energies of the ligands were studied in detail, respectively. It was found that the Eu(III) complexes have bright red fluorescence in solid state. The energies of excited triplet state for the three ligands are 20325 cm(-1) (L(3)), 21053 cm(-1) (L(2)) and 22831 cm(-1) (L(1)), respectively. All the three ligands sensitize Eu(III) strongly and the order of the emission intensity for the Eu(III) complexes with the three ligands is L(3)>L(2)>L(1). It can be explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and (5)D(1) of Eu(III). This means that the triplet energy level of the ligand is the chief factor, which dominates Eu(III) complexes luminescence.  相似文献   

7.
Song X  Zhou X  Liu W  Dou W  Ma J  Tang X  Zheng J 《Inorganic chemistry》2008,47(24):11501-11513
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of lanthanide complexes with two structurally related ligands, 1,1,1,1-tetrakis{[(2'-(2-benzylaminoformyl))phenoxyl]methyl}methane (L(I)) and 1,1,1,1-tetrakis{[(2'-(2-picolyaminoformyl))phenoxyl]methyl}methane (L(II)). A series of zero- to three-dimensional lanthanide coordination complexes have been obtained by changing the substituents on the Pentaerythritol. Our results revealed that, complexes of the L(I) ligand, {Ln(4)L(I)(3)(NO(3))(12).nC(4)H(10)O}(infinity) (Ln = Nd, Eu, Tb, Er, n = 3 or 6)] show the binodal 3,4-connected three-dimensional interpenetration coordination polymers with topology of a (8(3))(4)(8(6))(3) notation. Compared to L(I), complexes of L(II) present a cage-like homodinuclear [Ln(2)L(II)(2)(NO(3))(6).2H(2)O].nH(2)O (Ln = Nd, Tb, Dy, n = 0 or 1) or a helical one-dimensional coordination {[ErL(II)(NO(3))(3).H(2)O].H(2)O}(infinity) polymer. The luminescence properties of the resulting complexes formed with ions used in fluoroimmunoassays (Ln = Eu, Tb) are also studied in detail. It is noteworthy that subtle variation of the terminal group from benzene to pyridine not only sensibly affects the overall molecular structures but also the luminescence properties as well.  相似文献   

8.
The enantiopure amine macrocycle H(3)L, as well as the parent macrocyclic Schiff base H(3)L1, the 3 + 3 condensation product of (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol, are able to form mononuclear complexes with lanthanide(III) ions. The lanthanide(III) complexes of H(3)L have been studied in solution using NMR spectroscopy and electrospray mass spectrometry. The NMR spectra indicate the presence of complexes of low C(1) and C(2) symmetry. The (1)H and (13)C NMR signals of the Lu(III) complex obtained from H(3)L have been assigned on the basis of COSY, TOCSY, NOESY, ROESY and HMQC spectra. The NMR data reveal unsymmetrical binding of lanthanide(III) ion and the presence of a dynamic process corresponding to rotation of Lu(III) within the macrocycle. The [Ln(H(4)L)(NO(3))(2)](NO(3))(2)(Ln = Sm(III), Eu(III), Dy(III), Yb(III) and Lu(III)) complexes of the cationic ligand H(4)L(+) have been isolated in pure form. The X-ray analysis of the [Eu(H(4)L)(NO(3))(2)](NO(3))(2) complex confirms the coordination mode of the macrocycle determined on the basis of NMR results. In this complex the europium(III) ion is bound to three phenolate oxygen atoms and two amine nitrogen atoms of the monoprotonated macrocycle H(4)L(+), as well as to two axial bidendate nitrate anions. In the presence of a base, mononuclear La(III), Ce(III) and Pr(III) complexes of the deprotonated form of the ligand L(3-) can be obtained. When 2 equivalents of Pr(III) are used in this synthesis Na(3)[Pr(2)L(NO(3))(2)(OH)(2)](2)NO(3).5H(2)O is obtained. The NMR, ES MS and an X-ray crystal model of this complex show coordination of two Pr(III) ions by the macrocycle L. The X-ray crystal structure of the free macrocycle H(3)L1 has also been determined. In contrast to macrocyclic amine H(3)L, the Schiff base H(3)L1 adopts a cone-type conformation resembling calixarenes.  相似文献   

9.
Shiga T  Ohba M  Okawa H 《Inorganic chemistry》2004,43(14):4435-4446
A series of trinuclear Cu(II)Ln(III)Cu(II) complexes with the bridging ligand 2,6-di(acetoacetyl)pyridine have been prepared by one-pot reaction with Cu(NO(3))(2).3H(2)O and Ln(NO(3))(3).nH(2)O in methanol. X-ray crystallographic studies for all the complexes indicate that two L(2)(-) ligands selectively sandwich two Cu(II) ions with the 1,3-diketonate entities and one Ln(III) ion with the 2,6-acetylpyridine entity to form a trinuclear CuLnCu core bridged by the enolate oxygen atoms. Cryomagnetic properties of the complexes are studied with respect to the electronic structure of the Ln ion.  相似文献   

10.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) chelates with tenoxicam (Ten) drug (H(2)L(1)) and dl-alanine (Ala) (HL(2)) and also the binary UO(2)(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO(2)(II) binary chelate was isolated in 1:2 ratio with the formula [UO(2)(H(2)L)(2)](NO(3))(2). The ternary chelates were isolated in 1:1:1 (M:H(2)L(1):L(2)) ratios and have the general formulae [M(H(2)L(1))(L(2))(Cl)(n)(H(2)O)(m)].yH(2)O (M=Fe(III) (n=2, m=0, y=2), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=3)); [M(H(2)L(1))(L(2))](X)(z).yH(2)O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO(2)(II) (X=NO(3), z=1, y=2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

11.
Based on an unsymmetrical 2-pyridylphosphonate ligand, two types of Ln(III)-Cu(II) compounds with three-dimensional structures were obtained under hydrothermal conditions, namely, Ln(2)Cu(3)(C(5)H(4)NPO(3))(6).4H(2)O (1.Ln; Ln=La, Ce, Pr, Nd) and Ln(2)Cu(3)(C(5)H(4)NPO(3))(6) (2.Ln; Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). Compounds 1.Ln are isostructural and crystallize in chiral cubic space group I2(1)3. In these structures, each Ln ion is nine-coordinate and has a tricapped triprismatic geometry, while each Cu center is six-coordinate with an octahedral environment. The {LnO(9)} polyhedra and {CuN(2)O(4)} octahedra are connected by edge sharing to form an inorganic open framework structure with a 3-connected 10-gon (10,3) topology in which the Ln and Cu atoms are alternately linked by the phosphonate oxygen atoms. Compounds 2.Ln are isostructural and crystallize in trigonal space group R3. In these structures, the {LnO(6)} octahedra are triply bridged by the {CPO(3)} tetrahedra by corner sharing to form an infinite chain along the c axis. Each chain is connected to its six equivalents through corner sharing of {CPO(3)} tetrahedra and {CuN(2)O(2)} planes to form a three-dimensional framework structure in which the Ln and Cu atoms are linked purely by O-P-O units. The formation of these two types of structures is rationalized by quantum chemical calculations, which showed that both the lanthanide contraction and the electron configuration of Cu(II) play important roles. When Cu(II) was replaced by Zn(II), only the first type of compounds resulted. The magnetic properties of complexes 1.Ln and 2.Ln were investigated. The nature of Ln(III)-Cu(II) (Ln=Ce, Pr, Nd) interactions is illustrated by comparison with their Ln(III)-Zn(II) analogues.  相似文献   

12.
Reaction of H(2)salen (H(2)L) with Tb(OAc)(3).4H(2)O (3 : 2) in MeOH-MeCN under reflux gave homoleptic Tb(4)L(6) (1) in 40% yield; in contrast, similar reactions of Tb(NO(3))(3).6H(2)O and LnCl(3).6H(2)O (Ln = Tb, Nd and Yb) gave [TbL(NO(3))(MeOH)](2)(micro-H(2)L) (2) and [LnL(Cl)(MeOH)](2)(micro-H(2)L) (Ln = Tb (3), Nd (4) and Yb (5); H(2)L = N,N'-ethylenebis(salicylideneimine)).  相似文献   

13.
A family of homo-valent [Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (1), [(MeOH)(2) is a subset of Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (2) (where L(1)H = 2-iminomethyl-6-methoxyphenol) and hetero-valent [(NO(3))(2) is a subset of Co(III)Co(II)(6)(OH)(6)(L(2))(6)](NO(3))·3MeCN (4) (where L(2)H = 2-iminophenyl-6-methoxyphenol) complexes possess metallic skeletons describing planar hexagonal discs. Their organic exteriors form double-bowl shaped topologies, and coupled with their 3-D connectivity, this results in the formation of molecular cavities in the solid state. These confined spaces are shown to behave as host units in the solid state for guests including solvent molecules and charge balancing counter anions. Magnetic susceptibility measurements on 2 and 4 reveal weak ferro- and ferrimagnetism, respectively. The utilisation of other Co(II) salt precursors gives rise to entirely different species including the mononuclear and trinuclear complexes [Co(II)(L(2))(2)] (5) and [Co(III)(2)Na(I)(1)(L(3))(6)](BF(4)) (6) (where L(3)H = 2-iminomethyl-4-bromo-6-methoxyphenol).  相似文献   

14.
Asymmetric, potentially pentadentate ligands (H(2)L(3)) are formed by subsequent condensation of a semicarbazide and benzoylhydrazine on 2,6-diacetylpyridine. Two equivalents of H(2)L(3) reacts with CeCl(3).7H(2)O, Ce(SO(4))(2).4H(2)O, or EuCl(3).6H(2)O under formation of [Ln(III)(HL(3))(2)](+) cations (Ln = Ce, Eu) with exclusive deprotonation of the benzoylhydrazone ligand arms. The Ce(4+) ion of the sulfate salt is reduced during the reaction and forms 10-coordinate singly charged complex cations, the structure of which is identical to the product of the reaction of cerium(III) chloride. The exact position of deprotonation in the ligands is resolved by infrared spectroscopy, bond lengths considerations, and the hydrogen bonding in the solid-state structures of the products. A similar approach allows the synthesis of mixed semicarbazone/thiosemicarbazone ligands (H(2)L(4)). The reaction of H(2)L(4) with Sm(NO(3))(3).6H(2)O leads to the first structurally characterized lanthanide complex with thiosemicarbazone coordination. The solid-state structure of the 10-coordinate complex [Sm(HL(4))(2)]NO(3).H(2)O shows exclusive deprotonation of the thiosemicarbazone arms of the ligands. All isolated complexes are air stable and do not undergo ligand exchange reactions or hydrolysis in the presence of water.  相似文献   

15.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

16.
The synthesis, structures, and magnetic properties of a family of isostructural "bell-shaped" heterometallic coordination clusters [Mn(III)(9)Mn(II)(2)La(III)(2)(μ(4)-O)(7)(μ(3)-O)(μ(3)-OH)(2)(piv)(10.8)(O(2)CC(4)H(3)O)(6.2)(NO(3))(2)(OH(2))(1.5)(MeCN)(0.5)]·12CH(3)CN·2H(2)O (1) and [Mn(III)(9)Mn(II)(2)Ln(2)(μ(4)-O)(7)(μ (3)-O)(μ(3)-OH)(2)(piv)(10.6)(O(2)CC(4)H(3)O)(6.4)(NO(3))(2)(OH(2))]·nCH(3)CN·H(2)O (Ln = Pr(III), n = 8 (2); Ln = Nd(III), n = 10 (3); Ln = Eu(III), n = 17 (4); Ln = Gd(III), n = 13 (5); piv = pivalate) are reported. The complexes were obtained from the reaction of [Mn(III)(2)Mn(II)(4)O(2)(piv)(10)(4-Me-py)(2.5)(pivH)(1.5)] and Ln(NO(3))(3)·6H(2)O in the presence of 2-furan-carboxylic acid (C(4)H(3)OCOOH) in CH(3)CN. Compounds 1-5 are isomorphous, crystallizing in the triclinic space group P1 with Z = 2. The Mn(III) and Mn(II) centers together form the shell of the bell, while the two Ln(III) centers can be regarded as the bell's clapper. The magnetic properties of 1-4 reveal dominant antiferromagnetic interactions between the magnetic centers leading to small spin ground states; while those of 5 indicate similar antiferromagnetic interactions between the manganese ions but with unusually strong ferromagnetic interactions between the Gd(III) ions leading to a large overall spin ground state of S = 11-12. While ac and dc magnetic measurements confirmed that Mn(11)Gd(2) (5) is a single-molecule magnet (SMM) showing hysteresis loops at low temperatures, compounds 1-4 do not show any slow relaxation of the magnetization, indicating that the S = 7 spin of the ferromagnetic Gd(2) unit in 5 is a necessary contribution to its SMM behavior.  相似文献   

17.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

18.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

19.
A series of isostructural 3d-4f coordination clusters (CCs) [Mn(4)Ln(4)(OH)(6)(H(2)L)(2)(H(3)L)(2)(PhCO(2))(2)(N(3))(2)(MeOH)(4)]Cl(1.6)(N(3))(0.4)(NO(3))(2)·2.4H(2)O·1.6MeOH where Ln = Gd, Tb, Dy, Ho and Er and H(5)L = bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (bis-tris) has been synthesised and structurally characterised. The paramagnetic metal ions within the clusters are weakly antiferromagnetically coupled, with the Tb and Dy compounds displaying slow relaxation of their magnetisation. This is the first report of this versatile ligand being used to target 3d-4f CCs.  相似文献   

20.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号