首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

2.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

3.
A novel 3-D coordination polymer with trimeric copper (I) unit, [Cu(3)(CN)(IN)(2)](n)(IN = isonicotinate), was hydrothermally synthesized by the reaction of Cu(NO(3))(2).3H(2)O with isonicotinic and terephthalic acids. The structure was characterized to be a twofold interpenetrated 3-D coordination network polymer with two-coordinated copper(I). It has a powder SHG efficiency about that of KDP.  相似文献   

4.
The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].15H(2)O (2), built on a square [2 x 2] grid with four pendant copper arms, using "mild" reaction conditions. Similar reactions of Cl2pomp and 2pomp with Cu(ClO(4))(2) produce pinwheel clusters [Cu(8)(Cl2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8).7H(2)O (3) and [Cu(8)(2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8) (4), respectively. Heating a solution of 1 in MeOH/H(2)O produces a [3 x 3] nonanuclear square grid complex, [Cu(9)(Cl2poap-H)(3)(Cl2poap-2H)(3)](NO(3))(9).18H(2)O (5), which is also produced by direct reaction of the ligand and metal salt under similar conditions. Reaction of m2poap with Cu(NO(3))(2) produces only the [3 x 3] grid [Cu(9)(m2poap-H)(2)(m2poap-2H)(4)](NO(3))(8).17H(2)O (6) under similar conditions. Mixing the tritopic ligand 2poap with pyridine-2,6-dicarboxylic acid (picd) in the presence of Cu(NO(3))(2) produces a remarkable mixed ligand, nonanuclear grid complex [Cu(9)(2poap-H)(4)(picd-H)(3)(picd-2H)](NO(3))(9).9H(2)O (7), in which aromatic pi-stacking interactions are important in stabilizing the structure. Complexes 1-3 and 5-7 involve single oxygen atom (alkoxide) bridging connections between adjacent copper centers, while complex 4 has an unprecedented mixed micro-(N-N) and micro-O metal ion connectivity. Compound 1 (C(76)H(92)N(44)Cu(8)O(50)Cl(4)) crystallizes in the tetragonal system, space group I, with a = 21.645(1) A, c = 12.950(1) A, and Z = 2. Compound 2 (C(84)H(88)N(36)O(44)Cl(4)Cu(8)) crystallizes in the tetragonal system, space group I, with a = 21.2562(8) A, c = 12.7583(9) A, and Z = 2. Compound 4 (C(84)H(120)N(28)O(66)Cl(8)Cu(8)) crystallizes in the tetragonal system, space group I4(1)/a, with a = 20.7790(4) A, c = 32.561(1) A, and Z = 4. Compound 7(C(104)H(104)N(46)O(56)Cu(9)) crystallizes in the triclinic system, space group P, with a = 15.473(1) A, b = 19.869(2) A, c = 23.083(2) A, alpha = 88.890(2) degrees, beta = 81.511(2) degrees, gamma = 68.607(1) degrees, and Z = 2. All complexes exhibit dominant intramolecular ferromagnetic exchange coupling, resulting from an orthogonal bridging arrangement within each polynuclear structure.  相似文献   

5.
A series of new 1D chain and 2D coordination polymers with cyclotriguaiacylene-type ligands are reported. A zig-zag 1D coordination chain is found in complex [Cd(2)(4ph4py)(NO(3))(3)(H(2)O)(2)(DMA)(2)]·(NO(3))·(DMA)(4), where 4ph4py = tris[4-(4-pyridyl)benzoyl]-cyclotriguaiacylene and DMA = dimethylacetamide, while complex [Zn(4ph4py)(2)(CF(3)COO)(H(2)O)]·(CF(3)COO)(NMP)(7), where NMP = N-methylpyrrolidone, has a doubly bridged coordination chain structure. Complexes [M(3ph3py)(NO(3))(2)]·(NMP)(4) where M = Co or Zn, 3ph3py = tris[3-(3-pyridyl)benzoyl]cyclotriguaiacylene, are isostructural and feature 1D ladder coordination chains. Complexes [Cd(2)(4ph4py)(2)(NO(3))(4)(NMP)]·(NMP)(9)(H(2)O)(4) and [Co(4ph4py)(H(2)O)(2)]·(NO(3))(2)·(DMF)(2), where DMF = dimethylformamide, both have (3,4)-connected 2D coordination polymers with a rare (4(2).6(2))(4.6(2))(2) topology. A 2D coordination polymer with this topology is also found in complex [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)]·(NO(3))(3)·(DMF)(9) where 3ph4py = tris[3-(4-pyridyl)benzoyl]cyclotriguaiacylene. All 2D coordination polymer complexes are interpenetrating or polycatenating. [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)](3+)polymers form a 2D→3D polycatenation showing self-complementary "hand-shake" interactions between the host-type ligands.  相似文献   

6.
The reaction of nitric oxide with the carboxylate-bridged diiron(II) complex [Fe(2)(Et-HPTB)(O(2)CPh)](BF(4))(2) (1a) afforded the dinitrosyl adduct, [Fe(2)(NO)(2)(Et-HPTB)(O(2)CPh)](BF(4))(2) (1b), where Et-HPTB = N,N,N',N'-tetrakis(N-ethyl-2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane, in 69% yield. Compound 1b further reacts with dioxygen to form the bis(nitrato) complex, [Fe(2)(Et-HPTB)(NO(3))(2)(OH)](BF(4))(2) (1c). The structure of 1b was determined by X-ray crystallography (triclinic, P&onemacr;, a = 13.5765(8) ?, b = 15.4088(10) ?, c = 16.2145(10) ?, alpha = 73.656(1) degrees, beta = 73.546(1) degrees, gamma = 73.499(1) degrees, V = 3043.8(7) ?(3), T = -80 degrees C, Z = 2, and R = 0.085 and R(w) = 0.095 for 5644 independent reflections with I > 3sigma(I)). The two nitrosyl units are equivalent with an average Fe-N-O angle of 167.4 +/- 0.8 degrees. Spectroscopic characterization of solid 1b revealed an NO stretch at 1785 cm(-)(1) in the infrared and M?ssbauer parameters of delta = 0.67 mm s(-)(1) and DeltaE(Q) = 1.44 mm s(-)(1) at 4.2 K. These data are comparable to those for other {FeNO}(7) systems. An S = (3)/(2) spin state was assigned from magnetic susceptibility studies to the two individual {FeNO} centers, each of which has a nitrosyl ligand antiferromagnetically coupled to iron. A least-squares fit of the chi vs temperature plots to a theoretical model yielded an exchange coupling constant J of -23 cm(-)(1), where H = -2JS(1).S(2), indicating that the two S = (3)/(2) centers are antiferromagnetically coupled to one another. An extended Hückel calculation on a model complex, [Fe(2)(NO)(2)(NH(3))(6)(O(2)CH)(OH)](2+), revealed that the magnitudes of Fe-N-O angles are dictated by pi-bonding interactions between the Fe d(xz)() and NO pi orbitals.  相似文献   

7.
The Schiff base ligands 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (L1, monoclinic, P2(1)/c, a = 3.856(1) A, b = 11.032(2) A, c = 12.738(3) A, beta = 92.21(3) degrees, Z = 2) and 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (L2, monoclinic, P2(1)/c, a = 10.885(2) A, b = 4.613(1) A, c = 14.978(3) A, beta = 92.827(4) degrees, Z = 2) were used in the synthesis of four new organic-inorganic coordination polymers, each of them adopting a different structural motif. Synthesis, X-ray structural determinations, and spectroscopic and thermogravimetric analyses are presented. The reaction between Co(NO(3))(2).6H(2)O and L1 afforded a two-dimensional noninterpenetrating brick-wall structure, [Co(C(12)N(4)H(10))(1.5)(NO(3))(2)(H(2)O)(CH(2)Cl(2))(2)](n)() (1, triclinic, P1; a = 10.242(7) A, b = 10.802(7) A, c = 15.100(1) A, alpha = 70.031(1), beta = 75.168(11), gamma = 76.155(11), Z = 2), while Ni(NO(3))(2).6H(2)O combined with L1 yielded an interpenetrating three-dimensional rhombus-grid polymer, [Ni(C(12)N(4)H(10))(2)(NO(3))(2)(OC(4)H(8))(1.66)(H(2)O)(0.33)](n) (2, monoclinic, C2/c; a = 20.815(8) A, b = 23.427(8) A, c = 17.291(6) A, beta = 116.148(6), Z = 8). The reaction of Co(NO(3))(2).6H(2)O and L2 was found to be solvent-sensitive and resulted in the formation of two different noninterpenetrating compounds: [Co(C(14)N(4)H(14))(2)(NO(3))(2)(C(6)H(6))(1.5)](n)() (3, monoclinic, C2/c; a = 22.760(2) A, b = 21.010(3) A, c = 25.521(2) A, beta = 97.151(2), Z = 8), which adopts a two-dimensional square-grid motif formed by propeller-type modules, and [Co(C(14)N(4)H(14))(1.5)(NO(3))(2)(CH(2)Cl(2))(2)](n)() (4, monoclinic, P2(1)/n; a = 14.432(2) A, b = 14.543(8) A, c = 15.448(4) A, beta = 96.968(0), Z = 4), consisting of T-shaped building blocks assembled into a one-dimensional ladder-type structure. These four coordination polymers all exhibit impressive thermal stability. Thermogravimetric studies showed that after complete removal of the solvents, the frameworks are stable to temperatures between 234 degrees C and 260 degrees C.  相似文献   

8.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

9.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

10.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

11.
Wei QH  Yin GQ  Zhang LY  Shi LX  Mao ZW  Chen ZN 《Inorganic chemistry》2004,43(11):3484-3491
A series of Ag(I)-Cu(I) heteronuclear alkynyl complexes were prepared by reaction of polymeric (MCCC(6)H(4)R-4)(n)() (M = Cu(I) or Ag(I); R = H, CH(3), OCH(3), NO(2), COCH(3)) with [M'(2)(mu-Ph(2)PXPPh(2))(2)(MeCN)(2)](ClO(4))(2) (M' = Ag(I) or Cu(I); X = NH or CH(2)). Heterohexanuclear complexes [Ag(4)Cu(2)(mu-Ph(2)PNHPPh(2))(4)(CCC(6)H(4)R-4)(4)](ClO(4))(2) (R = H, 1; CH(3), 2) were afforded when X = NH, and heterooctanuclear complexes [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)R-4)(6)(MeCN)](ClO(4))(2) (R = H, 3; CH(3), 4; OCH(3), 5; NO(2), 6) were isolated when X = CH(2). Self-assembly reaction between (MCCC(6)H(4)COCH(3)-4)(n) and [M'(2)(mu-Ph(2)PCH(2)PPh(2))(2)(MeCN)(2)](ClO(4))(2), however, gave heterohexadecanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](2)(ClO(4))(4) (7). The heterohexanuclear complexes 1 and 2 show a bicapped cubic skeleton (Ag(4)Cu(2)C(4)) consisting of four Ag(I) and two Cu(I) atoms and four acetylide C donors. The heterooctanuclear complexes 3-6 exhibit a waterwheel-like structure that can be regarded as two Ag(3)Cu(CCC(6)H(5))(3) components put together by three bridging Ph(2)PCH(2)PPh(2) ligands. The heterohexadecanuclear complex 7 can be viewed as a dimer of heterooctanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](ClO(4))(2) through the silver and acetyl oxygen (Ag-O = 2.534 (4) A) linkage between two waterwheel-like Ag(6)Cu(2) units. All of the complexes show intense luminescence in the solid states and in fluid solutions. The microsecond scale of lifetimes in the solid state at 298 K reveals that the emission is phosphorescent in nature. The emissive state in compounds 1-5 is likely derived from a (3)LMCT (CCC(6)H(4)R-4 --> Ag(4)Cu(2) or Ag(6)Cu(2)) transition, mixed with a metal cluster-centered (d --> s) excited state. The lowest lying excited state in compounds 6 and 7 containing electron-deficient 4-nitrophenylacetylide and 4-acetylphenylacetylide, respectively, however, is likely dominated by an intraligand (3)[pi --> pi] character.  相似文献   

12.
The copper(I) and copper(II) complexes with the nitrogen donor ligands bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-BB), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB), N-acetyl-2-BB (AcBB), and tris[2-(1-methylbenzimidazol-2-yl)ethyl]nitromethane (TB) have been studied as models for copper nitrite reductase. The copper(II) complexes form adducts with nitrite and azide that have been isolated and characterized. The Cu(II)-(1-BB) and Cu(II)-AcBB complexes are basically four-coordinated with weak axial interaction by solvent or counterion molecules, whereas the Cu(II)-(2-BB) and Cu(II)-TB complexes prefer to assume five-coordinate structures. A series of solid state structures of Cu(II)-(1-BB) and -(2-BB) complexes have been determined. [Cu(1-BB)(DMSO-O)(2)](ClO(4))(2): triclinic, P&onemacr; (No. 2), a = 9.400(1) ?, b = 10.494(2) ?, c = 16.760(2) ?, alpha = 96.67(1) degrees, beta = 97.10(1) degrees, gamma = 108.45(1) degrees, V = 1534.8(5) ?(3), Z = 2, number of unique data [I >/= 3sigma(I)] = 4438, number of refined parameters = 388, R = 0.058. [Cu(1-BB)(DMSO-O)(2)](BF(4))(2): triclinic, P&onemacr; (No. 2), a = 9.304(5) ?, b = 10.428(4) ?, c = 16.834(8) ?, alpha = 96.85(3) degrees, beta = 97.25(3) degrees, gamma = 108.21(2) degrees, V = 1517(1) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3388, number of refined parameters = 397, R = 0.075. [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 7.533(2) ?, b = 8.936(1) ?, c = 19.168(2) ?, alpha = 97.66(1) degrees, beta = 98.62(1) degrees, gamma = 101.06(1) degrees, V = 1234.4(7) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3426, number of refined parameters = 325, R = 0.081. [Cu(2-BB)(MeOH)(ClO(4))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 8.493(3) ?, b = 10.846(7) ?, c = 14.484(5) ?, alpha = 93.71(4) degrees, beta = 103.13(3) degrees, gamma = 100.61(4) degrees, V = 1270(1) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2612, number of refined parameters = 352, R = 0.073. [Cu(2-BB)(N(3))](ClO(4)): monoclinic, P2(1)/n (No. 14), a = 12.024(3) ?, b = 12.588(5) ?, c = 15.408(2) ?, beta = 101,90(2) degrees, V = 2282(1) ?(3), Z = 4, number of unique data [I >/= 2sigma(I)] = 2620, number of refined parameters = 311, R = 0.075. [Cu(2-BB)(NO(2))](ClO(4))(MeCN): triclinic, P&onemacr; (No. 2), a = 7.402(2) ?, b = 12.500(1) ?, c = 14.660(2) ?, alpha = 68.14(1) degrees, beta = 88.02(2) degrees, gamma = 78.61(1) degrees, V = 1233.0(4) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2088, number of refined parameters = 319, R = 0.070. In all the complexes the 1-BB or 2-BB ligands coordinate the Cu(II) cations through their three donor atoms. The complexes with 2-BB appear to be more flexible than those with 1-BB. The nitrito ligand is bidentate in [Cu(2-BB)(NO(2))](ClO(4))(MeCN) and essentially monodentate in [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)). The copper(I) complexes exhibit nitrite reductase activity and react rapidly with NO(2)(-) in the presence of stoichiometric amounts of acid to give NO and the corresponding copper(II) complexes. Under the same conditions the reactions between the copper(I) complexes and NO(+) yield the same amount of NO, indicating that protonation and dehydration of bound nitrite are faster than its reduction. The NO evolved from the solution was detected and quantitated as the [Fe(EDTA)(NO)] complex. The order of reactivity of the Cu(I) complexes in the nitrite reduction process is [Cu(2-BB)](+) > [Cu(1-BB)](+) > [Cu(TB)](+) > [Cu(AcBB)](+).  相似文献   

13.
The synthesis and magnetic properties of five new homo- and heterometallic nickel(II) complexes containing artificial amino acids are reported: [Ni(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·3.05MeOH (1·3.05MeOH), [Ni(6)La(aib)(12)](NO(3))(3)·5.5H(2)O (2·5.5H(2)O), [Ni(6)Pr(aib)(12)](NO(3))(3)·5.5H(2)O (3·5.5H(2)O), [Ni(5)(OH)(2)(l-aba)(4)(OAc)(4)]·0.4EtOH·0.3H(2)O 6(4·0.4EtOH·0.3H(2)O), and [Ni(6)La(l-aba)(12)][La(2)(NO(3))(9)] (5; aibH = 2-aminoisobutyric acid; l-abaH = l-2-aminobutyric acid). Complexes 1 and 4 describe trigonal-pyramidal and square-based pyramidal metallic clusters, respectively, while complexes 2, 3, and 5 can be considered to be metallocryptand-encapsulated lanthanides. Complexes 4 and 5 are chiral and crystallize in the space groups I222 and P2(1)3, respectively. Direct-current magnetic susceptibility studies in the 2-300 K range for all complexes reveal the presence of dominant antiferromagnetic exchange interactions, leading to small or diamagnetic ground states.  相似文献   

14.
Reaction of the platinum(III) dimeric complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(NO(3))(2)](NO(3))(2) (1), prepared in situ by the oxidation of the platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with Na(2)S(2)O(8), with terminal alkynes CH[triple bond]CR (R = (CH(2))(n)CH(3) (n = 2-5), (CH(2))(n)CH(2)OH (n = 0-2), CH(2)OCH(3), and Ph), in water gave a series of ketonyl-Pt(III) dinuclear complexes [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)COR)](NO(3))(3) (3, R = (CH(2))(2)CH(3); 4, R = (CH(2))(3)CH(3); 5, R = (CH(2))(4)CH(3); 6, R = (CH(2))(5)CH(3); 7, R = CH(2)OH; 8, R = CH(2)CH(2)OH; 9, R = (CH(2))(2)CH(2)OH; 10, R = CH(2)OCH(3); 11, R = Ph). Internal alkyne 2-butyne reacted with 1 to form the complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(CH(3))COCH(3))](NO(3))(3) (12). These reactions show that Pt(III) reacts with alkynes to give various ketonyl complexes. Coordination of the triple bond to the Pt(III) atom at the axial position, followed by nucleophilic attack of water and hydrogen shift from the enol to keto form, would be the mechanism. The structures of complexes 3.H(2)O, 7.0.5C(3)H(4)O, 9, 10, and 12 have been confirmed by X-ray diffraction analysis. A competitive reaction between equimolar 1-pentyne and 1-pentene toward 1 produced complex 3 and [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)CH(OH)CH(2)CH(2)CH(3))](NO(3))(3) (14) at a molar ratio of 9:1, suggesting that alkyne is more reactive than alkene. The ketonyl-Pt(III) dinuclear complexes are susceptible to nucleophiles, such as amines, and the reactions with secondary and tertiary amines give the corresponding alpha-amino-substituted ketones and the reduced Pt(II) complex quantitatively. In the reactions with primary amines, the once formed alpha-amino-substituted ketones were further converted to the iminoketones and diimines. The nucleophilic attack at the ketonyl group of the Pt(III) complexes provides a convenient means for the preparation of alpha-aminoketones, alpha-iminoketones, and diimines from the corresponding alkynes and amines.  相似文献   

15.
16.
The tritopic ligand 2poap self-assembles in the presence of Zn(NO(3))(2) and Fe(NO(3))(3) to form homoleptic [3 x 3] nonanuclear M(9) (M = Zn(II), Fe(III)) square grid structures and with Pb(ClO(4))(2) to form a dimerized linear trinuclear [Pb(3)](2) structure. Cl2poap and Cl2poapz form self-assembled homoleptic [3 x 3] Mn(II)(9) square grids with Mn(ClO(4))(2) and Mn(NO(3))(2), respectively, but an unusual incompletely metalated Fe(III)(5) square grid is formed on reaction of Cl2poap with Fe(ClO(4))(3). X-ray structures are reported for [Mn(9)(Cl2poap-2H)(6)](ClO(4))(6).10H(2)O (3), [Mn(9)(Cl2poapz-2H)(6)] (NO(3))(6).22H(2)O (4), [Zn(9)(2poap-2H)(3)(2poap-H)(3)](NO(3))(9).24H(2)O (5), [Pb(3)(2poap-2H) (ClO(4))(4)](2).8H(2)O (6), and [Fe(5)(Cl2poap-H)(6)](ClO(4))(9).34.5H(2)O (7). Compound 3 crystallized in the monoclinic system, space group P(-)1, with a = 18.179(1) A, b = 18.857(1) A, c = 25.871(2) A, alpha = 70.506(2) degrees, beta = 86.440(1) degrees, gamma = 75.175(2) degrees, and z = 2. Compound 4 crystallized in the monoclinic system, space group P(-)1, with a = 16.900(2) A, b = 20.02393) A, c = 25.663() A, alpha = 84.743(3) degrees, beta = 84.885(2) degrees, gamma = 67.081(2) degrees, and z = 2. Compound 5 crystallized in the monoclinic system, space group P(-)1, with a = 18.482(1) A, b = 18.774(1) A, c = 28.112(2) A, alpha = 104.020(1) degrees, beta = 97.791(1) degrees, gamma = 117.036(1) degrees, and z = 2. Compound 6 crystallized in the monoclinic system, space group P(-)1, with a = 10.0513(6) A, b = 11.0958(6) A, c = 17.334(1) A, alpha = 100.932(1) degrees, beta = 100.387(1) degrees, gamma = 94.565(1) degrees, and z = 2. Compound 7 crystallized in the monoclinic system, space group P(-)1, with a = 19.164(1) A, b = 19.587(2) A, c = 26.673(2) A, alpha = 76.430(2) degrees, beta = 78.834(2) degrees, gamma = 64.973(1) degrees, and z = 2. Compound 3 exhibits intramolecular antiferromagnetic exchange within the nonanuclear [Mn(9)(mu-O)(12)] grid structure (J = -4.6 cm(-1)), while the analogous nonanuclear complex [Fe(9)(2poap-2H)(6)](NO(3))(15).18H(2)O (8) is dominated by intramolecular antiferromagnetic coupling at high temperatures but exhibits a low-temperature feature indicative of additional ferromagnetic interactions. The isolated pentanuclear Fe(5) [4 + 1] square grid in 7, with distant Fe-Fe bridging, exhibits very weak antiferromagnetic coupling (J = -0.2 cm(-1)). M?ssbauer spectroscopy data are consistent with high-spin Fe(III)(9) and Fe(III)(5) structures.  相似文献   

17.
A family of homo-valent [Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (1), [(MeOH)(2) is a subset of Co(II)(7)(OH)(6)(L(1))(6)](NO(3))(2) (2) (where L(1)H = 2-iminomethyl-6-methoxyphenol) and hetero-valent [(NO(3))(2) is a subset of Co(III)Co(II)(6)(OH)(6)(L(2))(6)](NO(3))·3MeCN (4) (where L(2)H = 2-iminophenyl-6-methoxyphenol) complexes possess metallic skeletons describing planar hexagonal discs. Their organic exteriors form double-bowl shaped topologies, and coupled with their 3-D connectivity, this results in the formation of molecular cavities in the solid state. These confined spaces are shown to behave as host units in the solid state for guests including solvent molecules and charge balancing counter anions. Magnetic susceptibility measurements on 2 and 4 reveal weak ferro- and ferrimagnetism, respectively. The utilisation of other Co(II) salt precursors gives rise to entirely different species including the mononuclear and trinuclear complexes [Co(II)(L(2))(2)] (5) and [Co(III)(2)Na(I)(1)(L(3))(6)](BF(4)) (6) (where L(3)H = 2-iminomethyl-4-bromo-6-methoxyphenol).  相似文献   

18.
19.
Four new organic/inorganic coordination polymers, [Cd(C(10)H(8)N(2))(2)(H(2)O)(2)(NO(3))(2)](n)(1), [Co(C(10)H(8)N(2))(H(2)O)NO(3)CH(3)OH](n)(2), [Cu(C(10)H(8)N(2))(CH(3)OH)(NO(3))(2)](n) (3), and [Cu(C(10)H(8)N(2))(hfac)(2)](n)(4), were synthesized by using the rigid ligand 1,2-bis(3-pyridyl)ethyne (3,3'-DPA). Complex 1 crystallizes in space group P2/n: a = 12.462(2) A, b = 9.485(1) A, c = 13.383(2) A, beta = 96.629(2) degrees, V = 1559.6(3) A(3), Z = 4. Complex 2 crystallizes in space group Fddd: a = 9.248(4) A, b = 19.982(7) A, c = 35.093(16) A, V = 6485.0(4) A(3), Z = 8. Complex 3 crystallizes in space group I2/a: a = 18.315(2) A, b = 8.517(1) A, c = 20.494(3) A, beta = 104.042(2) degrees, V = 3101.2(7) A(3), Z = 8. Complex 4 crystallizes in space group P21/c: a = 6.576(1) A, b = 16.189(1) A, c = 11.653(1) A, beta = 91.337(1) degrees, V = 1240.3(2) A(3), Z = 2. The coordination polymers display a variety of structural architectures, ranging from sinusoidal and zigzag chains (1, 3, 4) to two-dimensional channel-type architectures (2). The effects of the orientation of the nitrogen atom in the pyridine rings on the resultant structures are discussed.  相似文献   

20.
The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(?-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(?-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(?-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) ?; 2·toluene, 1.281(5) ?; 4·CH(2)Cl(2), 1.300(8) ?] and shorter C-C lengths [1, 1.418(5) ?; 2·toluene, 1.439(6) ?; 4·CH(2)Cl(2), 1.434(9) ?] of the OO chelates are consistent with the presence of a reduced PQ(?-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(?-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans isomers 1 and 3 also undergo one-electron reduction at -1.11 and -0.96 V, forming PQ(2-) complexes trans-[Ru(II)(PQ(2-))(PPh(3))(2)(CO)Cl](-) (1(-)) and trans-[Os(II)(PQ(2-))(PPh(3))(2)(CO)Br](-) (3(-)). Oxidation of 1 by I(2) affords diamagnetic 1(+)I(3)(-) in low yields. Bond parameters of 1(+)I(3)(-) [C-O, 1.256(3) and 1.258(3) ?; C-C, 1.482(3) ?] are consistent with ligand oxidation, yielding a coordinated PQ ligand. Origins of UV-vis/near-IR absorption features of 1-4 and the electrogenerated species have been investigated by spectroelectrochemical measurements and time-dependent DFT calculations on 5, 6, 5(+), and 5(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号