首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients’ life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.  相似文献   

2.
Micro- and nanoelectromechanical systems, including cantilevers and other small scale structures, have been studied for sensor applications. Accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules have been demonstrated using a variety of these devices that undergo static deflections or shifts in resonant frequency upon analyte binding. In particular, biological detection of viruses, antigens, DNA, and other proteins is of great interest. While the majority of currently used detection schemes are reliant on biomarkers, such as fluorescent labels, time, effort, and chemical activity could be saved by developing an ultrasensitive method of label-free mass detection. Micro- and nanoscale sensors have been effectively applied as label-free detectors. In the following, we review the technologies and recent developments in the field of micro- and nanoelectromechanical sensors with particular emphasis on their application as biological sensors and recent work towards integrating these sensors in microfluidic systems.  相似文献   

3.
Summary Optical fibre chemical sensors permit the determination of a wide range of anions, cations, gases and organic compounds in solution or gas phases. For in-line operation in complex or aggressive mixtures the requirements of selectivity, sensitivity, longevity and reproducible response impose great demands on the sensor reagents and protective membrane system. These demands will be alleviated by preceding the sensors with sample pretreatment and separation procedures and permit the best exploitation of their characteristics. For simpler analytical matrices, or those which are largely unchanging, tailored sensors provide a very useful means of specific determination. There is a clear need for high sensitivity and high selectivity of the reagent over as wide a range of conditions as possible — a demanding requirement.
Faseroptische chemische Sensoren
Zusammenfassung Faseroptische chemische Sensoren erlauben die Bestimmung einer großen Zahl von Anionen, Kationen, Gasen und organischen Verbindungen in Lösung oder Gasphasen. Für den direkten Einsatz in Komplexen oder aggressiven Mischungen stellen die Ansprüche hinsichtlich Selektivität, Empfindlichkeit, Langlebigkeit und Reproduzierbarkeit hohe Anforderungen an die Sensorreagentien und das schützende Membransystem. Diese Anforderungen werden dadurch gemildert, daß Probenvorbereitung und Trennverfahren vorausgeschickt werden, was die beste Ausnutzung der Sensoreigenschaften ermöglicht. Für einfachere Matrices oder solche, die im wesentlichen unveränderlich bleiben, stellen maßgeschneiderte Sensoren ein nützliches Mittel für die spezifische Bestimmung dar.Die Notwendigkeit liegt auf der Hand, daß die Reagentien über einen möglichst großen Bereich von Einsatzbedingungen hohe Empfindlichkeit und hohe Selektivität aufweisen — eine wichtige Anforderung.
  相似文献   

4.
5.
《Sensors and Actuators》1988,13(3):293-298
The sensing of ions in various media is a continuing problem that often requires new techniques as existing sensors may be inadequate for a particular example. Chemical sensors based on fibre optics have recently been the subject of considerable interest, as they have a number of advantages over conventional systems. This paper reviews those optical fibre chemical sensors that have been developed for the sensing of ionic chemical species in solution.  相似文献   

6.
Quartz-crystal sensors for biosensing and chemical analysis   总被引:3,自引:0,他引:3  
The principle and applications of quartz-crystal sensors based on the three basic concepts for mass, viscosity, and viscoelastic changes are reported. In the general discussion the realization of a resonant frequency-resonant resistance diagram is described in detail. As an example of application to mass sensing, gas sensing with a carbon-coated quartz crystal is reported. Determination of the blood coagulation factor is used as an example of the application to viscosity sensing. As an example of viscoelastic measurement, an ion-exchange polymer-coated quartz crystal is investigated to show that viscoelasticity changes more than mass in the transport process. The possibility of developing new biosensors and chemical sensors is discussed on the basis of these results.  相似文献   

7.
The main analytical characteristics of optical chemical sensors for detecting the vapors and microparticles of explosives and associated substances are compared. The limits of detection, sensitivity, sensor setting time (response speed) and recovery time after the action of an analyte, and the selectivity of fluorescence sensors, chemiluminescence sensors, surface-enhanced Raman sensors, surface plasmon resonance sensors, absorption integrated optical waveguide sensors, waveguide interferometric sensors, and ring resonator based sensors. The effectiveness of the use of nanosized structures and bio- and nanostructured specific coatings in optical sensors is analyzed.  相似文献   

8.
Sol-gel porous materials with tailored or nanostructured cavities have been increasingly used as nanoreactors for the enhancement of reactions between entrapped chemical reactants. The domains of applications issued from these designs and engineering are extremely wide. This tutorial review will focus on one of these domains, in particular on optical chemical sensors, which are the subject of extensive research and development in environment, industry and health.  相似文献   

9.
10.
Micro- and nanofluidics for DNA analysis   总被引:8,自引:0,他引:8  
Miniaturization to the micrometer and nanometer scale opens up the possibility to probe biology on a length scale where fundamental biological processes take place, such as the epigenetic and genetic control of single cells. To study single cells the necessary devices need to be integrated on a single chip; and, to access the relevant length scales, the devices need to be designed with feature sizes of a few nanometers up to several micrometers. We will give a few examples from the literature and from our own research in the field of miniaturized chip-based devices for DNA analysis, including dielectrophoresis for purification of DNA, artificial gel structures for rapid DNA separation, and nanofluidic channels for direct visualization of single DNA molecules.  相似文献   

11.
In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes (including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms (such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here. The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.  相似文献   

12.
Colloidal oligo(tetraphenyl)silole nanoparticles in THF/H2O suspensions show increased luminescence and offer a method to detect TNT in an aqueous environment.  相似文献   

13.
周南 《分析试验室》2004,23(1):85-86
本届大会于2002年7月7日至10日在美国Boston市召开,由Elsevier科学公司主办。  相似文献   

14.
Anti-resonant reflecting optical waveguides (ARROW) are described which trap light in a low index layer between a lower, high-index confining layer and an upper total internal reflection boundary. In this configuration, most of the light (greater than 80%) travels in the low index porous polymer layer, the refractive index of which is monitored by examining the angle at which light is coupled out of the waveguide. It is shown that asymmetric ARROW sensors can be constructed using conventional chemical vapour deposition and spin-coating techniques and their sensitivity is as predicted by theoretical modelling.  相似文献   

15.
Optical sensors for dissolved sulfur dioxide   总被引:2,自引:0,他引:2  
Colorimetric sensing membranes for the determination of sulfur dioxide were developed and characterized. These films can be used for sensing trace amounts of sulfur dioxide both in the gas phase and in aqueous solutions. Lipophilic pH indicator ion pairs were immobilized in hydrophobic gas-permeable silicone and phenyl substituted ormosil. On exposure to SO2 the films undergo a visually detectable color change from blue to yellow. No cross-sensitivity to pH and CO2 was observed. Response times depend on the thickness of the sensing membranes, the indicator concentration in the film as well as on the respective SO2 concentration. Membranes with response times of < 1 min (t90) were developed. The sensitivity to sulfur dioxide depends on the pKa of the indicator. An increase in the pKa results in a lower detection limit. The new optical SO2 sensors are chemically and mechanically stable and are easy to manufacture. The storage stability of the membranes is at least 7 months if stored in the dark. Received: 17 December 1997 / Revised: 12 June 1998 / Accepted: 15 June 1998  相似文献   

16.
This paper describes a novel tape platform ion sensing methodology specific to the detection of cadmium(II) ions in aqueous solution based on assisted ion transfer reactions across a polarized water | organic gel micro-interface. The tape ion sensors were constructed to incorporate the micro-water | polyvinylchloride-2-nitrophenylethyl ether (PVC-NPOE) gel interfaces referred to as ionodes. The sensors have overall thicknesses less than 300 μm, allowing their packaging in a disposable tape format. The detection methodology is based on the selective assisted transfer of the cadmium ion in aqueous phase by ETH 1062 present in the PVC-NPOE gel layer and was first investigated using cyclic voltammetry. Quantitative analysis of cadmium(II) ions in aqueous solution using the tape sensors was then conducted under stop-flow conditions. Detection limits as low as 20 ppb (178 nM) for Cd(II) ions in very small volumes as low as a single 20 μl droplet without any sample preconcentration was achieved in an analysis time of approximately 20 s, which could be easily employed for the direct measurement of Cd(II) ion levels in various field applications. The tape ion sensor can also be used in a flow-cell geometry to preconcentrate Cd(II) ions from aqueous samples and further improve the detection limit.  相似文献   

17.
A prototype of a fast-response task-specific amperometric gas sensor based on paper-supported room-temperature ionic liquids (RTILs) is proposed here for improved analysis of volatile acid species. It consists of a small filter paper foil soaked with a RTIL mixture containing an ionic liquid whose anion (acetate) displays a basic character, upon which three electrodes are screen printed by carbon ink profiting from a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs and of their easy immobilization into a porous and inexpensive supporting material such as paper. The performance of this device, used as a wall-jet amperometric detector for flow injection analyses of headspace samples in equilibrium with aqueous solutions at controlled concentrations, was evaluated for phenol and 1-butanethiol vapours which were adopted as model acid gaseous analytes. The results obtained showed that the quite high potentials required for the detection of these analytes are lowered significantly, thanks to the addition of the basic acetate RTIL. In such a way, overlap with the medium discharge is avoided, and the possible adverse effect of interfering species is minimised. The sensor performance was quite satisfactory (detection limits, ca. 0.3 μM; dynamic range, ca. 1–200 μM, both referred to solution concentrations; correlation coefficients in the range 0.993–0.997; repeatability, ± 6 % RSD; long-term stability, 9 %); thus suggesting the possible use of this device for manifold applications.
Figure
Layout and cross-section of the RTIL-PED sensor adopted in flow injection analyses. R pseudo-reference electrode, W working electrode, C counter electrode  相似文献   

18.
The use of sol-gels as a sensing matrix for the development of unique sensing strategies is discussed. Sol-gels offer almost limitless possibilities for sensing substrates due to the variety of physical properties that can be obtained by altering a number of discussed fabrication conditions and techniques. By careful consideration of the sensing requirements, novel detection methods have been developed for a variety of analytes and applications. Here, sol-gels have been used to monitor pH at the extreme ends of the scale ([H+] = 1–11 M and [OH] = 1–10 M) and in mixed solvent/solute systems using dual sensing approaches. The use of ligand-grafted sol-gel monoliths for optical determination of metal ion species is also discussed. The electrochemical determination of Cr(VI) by electrodeposited sol-gel modified electrodes is also presented.  相似文献   

19.
本文讨论将溶胶凝胶作为一种基质来发展独特的传感策略.溶胶凝胶为传感基质的制备和发展提供了无限空间,这种空间得益于基质物理性质的多样性,可以通过改变一些传感器已知的制备条件和合成技术来实现.我们在对传感需求的认真考虑和研究的基础上,开发出了用于一些分析物的新的检测方法,同时发展了它们的应用.溶胶凝胶被用来监测浓强酸([H^+]=1~11M),浓强碱([OH^-]:1~10M)及采用双传感方法来测定混合溶剂/溶质系统.本文还讨论了使用配体嫁接的块状溶胶凝胶对金属离子进行光学测定.最后介绍了用电化学法和溶胶凝胶修饰的电极来测定六价铬的方法.  相似文献   

20.
Seiter JC  Degrandpre MD 《Talanta》2001,54(1):99-106
Multiple chemical sensors are used to measure the same analyte simultaneously to determine whether the redundant signals can improve the long-term accuracy and circumvent the need for periodic calibrations. A specific marine chemistry application was investigated where six glass pH electrodes were placed in a synthetic seawater solution for nearly 2 months without recalibration. The pH accuracy was evaluated by comparison with spectrophotometric pH measurements. The standard deviation, t-test and principal-component analysis were used to evaluate the redundant signals. The average signal standard deviation was useful for determining the onset of drift, whereas, the principal-component analysis readily identified specific sensors that were drifting. The sensor signals, shown through t-tests to be outliers, were eliminated from the data set, resulting in a significant improvement in measurement accuracy. After 56 days, the signals from non-drifting and drifting sensors resulted in a pH accuracy of +/-0.012 and +/-0.040, respectively, over a threefold improvement. The residual +/-0.012 inaccuracy was limited by the performance of the remaining sensors, which appeared to drift with similar magnitude and could therefore not be statistically separated. These results indicate that redundant sensors coupled with a principal-component analysis are a potential alternative for situations where calibrations are not feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号