首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 359 毫秒
1.
本文采用第一性原理方法, 计算了SrF2的理想晶体和含锶、氟空位点缺陷晶体在100 GPa压力范围内的光学性质. 吸收谱数据表明, 压力因素引起的两个结构相变对SrF2的吸收谱均有影响: 第一个相变将导致其吸收边蓝移, 第二个相变将导致其吸收边红移. 空位点缺陷的存在将使得SrF2的吸收边红移, 其中氟空位点缺陷引起的红移行为更显著. 尽管如此, 这些红移并未使得SrF2晶体在可见光区出现光吸收的现象(是透明的). 波长在532 nm处的折射率数据指明, 在SrF2的三个结构相区, 其折射率均随压力的增加而增大, 且SrF2的高压结构相变也使得其折射率增大. 锶空位点缺陷将导致SrF2的折射率降低, 但氟空位点缺陷的存在对其基本没有影响. 分析表明, SrF2晶体有成为冲击窗口材料的可能.  相似文献   

2.
探寻新的冲击窗口材料是高压科学领域中的一个重要课题.为此,在100 GPa范围内,通过第一性原理方法计算了BaF2晶体的吸收谱以及在532 nm处的折射率.结果表明:1)压力和结构相变因素不会引起BaF2晶体在可见光区域出现光吸收;氟和钡空位点缺陷的存在将使得BaF2吸收谱的吸收边红移,但这些红移行为不会导致该材料在可见光区域内出现光吸收的现象,由此可以初步推测,BaF2晶体有成为冲击窗口材料的可能. 2) BaF2的折射率在其三个结构相区都随压力的增大而增大,并且BaF2的高压相变也使得其折射率升高;钡空位点缺陷的存在将导致其折射率减小,而氟空位点缺陷却引起其折射率增加.  相似文献   

3.
本文采用第一性原理方法,在100 GPa的压力范围内,计算了GeO_2理想晶体和含锗、氧空位点缺陷晶体的光学性质.吸收谱数据表明,压力诱导的三个结构相变对GeO_2晶体的吸收谱均有影响:第一个相变将导致其吸收边蓝移,而第二和第三相变将使得其吸收边红移.锗和氧空位点缺陷的存在将导致GeO_2的吸收边红移,但氧空位点缺陷引起的红移更明显.尽管如此,分析发现,在100 GPa的压力范围内,压力、相变以及空位点缺陷等因素都不会导致GeO_2晶体在可见光区出现光吸收现象(是透明的).波长在532 nm处的折射率数据显示,在GeO_2的四个相区,其折射率均随压力增加而降低;而且,GeO_2的三个结构相变以及锗、氧空位点缺陷都会导致其折射率有所增大.本文预测,GeO_2有成为冲击光学窗口材料的可能.  相似文献   

4.
本文采用第一性原理方法,在100 GPa的压力范围内, 计算了LiYF4理想晶体和含空位点缺陷晶体的光学性质.吸收谱数据表明,在100 GPa范围内,压力和相变因素的存在不会改变LiYF4晶体在250-1000 nm的波段内没有光吸收的事实. 氟、钇空位点缺陷的出现会使得LiYF4的吸收边蓝移,而锂空位点缺陷将导致它的吸收边微弱红移(但在250-1000 nm的波段内它仍不具有光吸收行为).波长在532 nm处的折射率数据显示, 在LiYF4的三个结构相区,其折射率均随压力的增加而增大. LiYF4从白钨矿结构到褐钇铌矿结构的相变会使得其折射率略微增加,但从褐钇铌矿结构到类黑钨矿结构的相变将导致其折射率显著降低. 同时,空位缺陷的存在将引起LiYF4的折射率明显增大. 分析指明,LiYF4有成为冲击窗口材料的可能. 本文所获得的信息对未来的实验研究有参考作用.  相似文献   

5.
本文采用第一性原理方法, 在190 GPa的压力范围内, 计算了BaLiF3理想晶体和含空位点缺陷晶体的光学性质. 吸收谱数据表明, 压力因素不会导致BaLiF3晶体在可见光区有光吸收的行为. 空位点缺陷的存在会使得BaLiF3的吸收边红移(其中氟空位点缺陷引起的红移最显著) , 但这些红移不会导致它在可见光区内出现光吸收的现象. 波长在532 nm处的折射率数据显示, BaLiF3的折射率将随压力升高而增大. 氟空位点缺陷将导致BaLiF3的折射率增大, 但钡空位点缺陷和锂空位点缺陷的存在对其基本没有影响. 本文预测, BaLiF3晶体有成为冲击光学窗口材料的可能.  相似文献   

6.
本文采用第一性原理方法,计算了Lu_2O_3(氧化镥)的理想晶体和含氧、镥空位点缺陷晶体在100 GPa压力范围内的光吸收谱和折射率性质.结果表明:在100 GPa范围内, Lu_2O_3理想晶体在可见光及红外光区不具有光吸收现象,空位点缺陷的存在将导致吸收边红移,其中氧空位点缺陷引起的红移行为更显著,但这些吸收边仍未进入可见光区的高波段. 532 nm处的折射率数据表明,在立方结构和单斜结构相区, Lu_2O_3晶体的折射率随压力的增加而增大,高压结构相变以及氧、镥空位的存在也会使得折射率增大.结合温度效应分析推测, Lu_2O_3晶体在近红外区有可能透明.  相似文献   

7.
为了探究BeO晶体能否成为冲击波实验中的候选窗口材料,本文采用密度泛函理论(DFT)的第一性原理方法,计算了150 GPa的压力范围内BeO理想晶体和含氧空位点缺陷晶体的光学性质.吸收谱数据显示,BeO高压结构相变对其吸收谱的吸收边几乎没有影响.并且,在150 GPa压力范围内,BeO理想晶体在可见光区没有光吸收行为.氧空位点缺陷的存在将使得其吸收边出现明显的红移现象,但在可见光区仍然没有光吸收(是透明的).波长在532 nm处的折射率数据表明:在BeO的WZ和RS结构相区,其折射率会随着压力增加而缓慢降低,而高压结构相变和氧空位缺陷将使得其折射率显著增大.计算数据分析表明BeO有成为冲击窗口材料的可能,并且本文所获信息将对未来进一步的实验有重要参考价值.  相似文献   

8.
为了探究BeO晶体能否成为冲击波实验中的候选窗口材料,本文采用密度泛函理论(DFT)的第一性原理方法,计算了150 GPa的压力范围内BeO理想晶体和含氧空位点缺陷晶体的光学性质.吸收谱数据显示,BeO高压结构相变对其吸收谱的吸收边几乎没有影响.并且,在150 GPa压力范围内,BeO理想晶体在可见光区没有光吸收行为.氧空位点缺陷的存在将使得其吸收边出现明显的红移现象,但在可见光区仍然没有光吸收(是透明的).波长在532 nm处的折射率数据表明:在BeO的WZ和RS结构相区,其折射率会随着压力增加而缓慢降低,而高压结构相变和氧空位缺陷将使得其折射率显著增大.计算数据分析表明BeO有成为冲击窗口材料的可能,并且本文所获信息将对未来进一步的实验有重要参考价值.  相似文献   

9.
本文采用第一性原理的方法,在100 GPa的压力范围内,计算了KMgF_3的理想晶体和含空位缺陷晶体的光学性质.吸收谱数据表明,在100 GPa范围内,压力因素不会导致KMgF_3晶体在可见光区有光吸收行为.钾、镁和氟空位缺陷的存在会使得KMgF_3晶体的吸收边红移(其中氟空位缺陷引起的红移最显著),但这些红移不会导致它在可见光区出现光吸收的现象.能量损失谱数据显示,压力因素不仅会使得KMgF_3晶体的能量损失谱有蓝移的行为,而且还会引起它的较强谱峰个数发生变化.在100 GPa处的缺陷晶体数据指明,氟空位缺陷会导致其能量损失谱的两个较强谱峰的峰值强度明显降低.分析表明,KMgF_3晶体有成为冲击窗口材料的可能,并且本文所获得的结果对未来的实验探究有参考作用.  相似文献   

10.
采用基于密度泛函理论(DFT)的第一性原理方法, 计算了AlN理想晶体和含铝、氮空位点缺陷晶体在100 GPa压力范围内的光学性质. 波长在532 nm处的折射率计算结果表明:AlN从纤锌矿结构相转变为岩盐矿结构相将导致其折射率增加; 铝空位缺陷将引起AlN岩盐矿结构相的折射率增大, 而氮空位缺陷却导致其折射率降低. 能量损失谱计算数据指明:结构相变使得AlN能量损失谱蓝移、主峰峰值强度增强;铝和氮空位缺陷将导致AlN岩盐矿结构相的能量损失谱主峰进一步蓝移、峰值强度再次增强. 计算预测的结果将为进一步的实验探究提供理论参考.  相似文献   

11.
研究表明,立方氧化锆可作为冲击波实验中的窗口材料.为了使得该材料在常态下保持结构稳定,需添加稳定剂——氧化钙.然而,掺杂会导致其在29 GPa的冲击压力下从立方转变为斜方Ⅱ结构相.因此,该材料在冲击压缩下的电子结构和光学吸收性质以及作为光学窗口的适用压力范围是值得研究的重要问题.本文运用第一性原理的方法,分别计算了在100 GPa范围内两种结构氧化锆的电子结构和光学吸收性质.结果表明:(1)在立方结构相区,冲击压力将导致其吸收边蓝移,而在斜方Ⅱ结构相区,却使得其吸收边红移;(2)在立方结构相区,掺杂将引起能隙变窄(吸收边红移),但对于斜方II相区,却导致能隙变宽(吸收边蓝移);(3)冲击结构相变使得能隙变窄,吸收边红移.本文数据建议,掺氧化钙的立方氧化锆在95GPa的冲击压力范围内可作为光学窗口材料.  相似文献   

12.
采用基于密度泛函理论(DFT)的第一性原理方法,计算了Al_2O_3晶体在高压下的光学性质.结果表明:(1)Al_2O_3从CaIrO_3结构转变为U_2S_3结构:将使得其吸收谱主峰值强度增强、副峰值强度显著减弱、主副谱峰均红移以及光谱吸收边出现巨大的红移.(2)结构相变将引起Al_2O_3折射率谱峰值强度减弱和谱峰数增加;同时,在波长为400-2000 nm的范围内,结构相变将导致Al_2O_3折射率显著增大.本文的计算结果为未来进一步的实验研究提供了参考信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号