首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanism of the     
Stereochemical studies on [2 + 2] photoaddition of cis-/trans-4-propenylanisole (cis-1 and trans-1) and cis-1-(p-methoxyphenyl)ethylene-2-d(1) (cis-3-d(1)) to C(60) exhibit stereospecificity in favor of the trans-2 cycloadduct in the former case and nonstereoselectivity in the latter. The observed stereoselectivity in favor of the cis-6-d(3) [2 + 2] diastereomer by 12% in the case of the photochemical addition of (E)-1-(p-methoxyphenyl)-2-methyl-prop-1-ene-3,3,3-d(3) (trans-5-d(3)) to C(60) is attributed to a steric kinetic isotope effect (k(H)/k(D) = 0.78). The loss of stereochemistry in the cyclobutane ring excludes a concerted addition and is consistent with a stepwise mechanism. Intermolecular secondary kinetic isotope effects of the [2 + 2] photocycloaddition of 3-d(0) vs 3-d(1), and 3-d(6) as well as 5-d(0) vs 5-d(1), and 5-d(6) to C(60) were also measured. The intermolecular competition due to deuterium substitution of both vinylic hydrogens at the beta-carbon of 3 exhibits a substantial inverse alpha-secondary isotope effect k(H)/k(D) = 0.83 (per deuterium). Substitution with deuterium at both vinylic methyl groups of 5 yields a small inverse k(H)/k(D) = 0. 94. These results are consistent with the formation of an open intermediate in the rate-determining step.  相似文献   

2.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

3.
Addition of excess R(2)NCN to an aqueous solution of K(2)[PtCl(4)] led to the precipitation of [PtCl(2)(NCNR(2))(2)] (R(2) = Me(2) 1; Et(2) 2; C(5)H(10) 3; C(4)H(8)O, 4) in a cis/trans isomeric ratio which depends on temperature. Pure isomers cis-1-3 and trans-1-3 were separated by column chromatography on SiO(2), while trans-4 was obtained by recrystallization. Complexes cis-1-3 isomerize to trans-1-3 on heating in the solid phase at 110 degrees C; trans-1 has been characterized by X-ray crystallography. Chlorination of the platinum(II) complexes cis-1-3 and trans-1-4 gives the appropriate platinum(IV) complexes [PtCl(4)(NCNR(2))(2)] (cis-5-7 and trans-5-8). The compound cis-6 was also obtained by treatment of [PtCl(4)(NCMe)(2)] with neat Et(2)NCN. The platinum(IV) complex trans-[PtCl(4)(NCNMe(2))(2)] (trans-5) in a mixture of undried Et(2)O and CH(2)Cl(2) undergoes facile hydrolysis to give trans-[PtCl(4)[(H)=C(NMe(2))OH](2)] (9; X-ray structure has been determined). The hydrolysis went to another direction with the cis-[PtCl(4)(NCNR(2))(2)] (cis-5-7) which were converted to the metallacycles [PtCl(4)[NH=C(NR(2))OC(NR(2))=NH]] (11-13) due to the unprecedented hydrolytic coupling of the two adjacent dialkylcyanamide ligands giving a novel (for both coordination and organic chemistry) diimino linkage. Compounds 11-13 and also 14 (R(2) = C(4)H(8)O) were alternatively obtained by the reaction between cis-[PtCl(4)(MeCN)(2)] and neat undried NCNR(2). The structures of complexes 11, 13, and 14 were determined by X-ray single-crystal diffraction. All the platinum compounds were additionally characterized by elemental analyses, FAB mass-spectrometry, and IR and (1)H and (13)C[(1)H] NMR spectroscopies.  相似文献   

4.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

5.
Mebi CA  Frost BJ 《Inorganic chemistry》2007,46(17):7115-7120
trans-[Ru(PTA)4Cl2] (trans-1), (PTA = 1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane) has been isolated and structurally characterized by X-ray crystallography. The structure reveals ruthenium in a slightly distorted-octahedral environment bound to two axial chlorides and four equatorial PTA ligands. In organic solvents, trans-1 undergoes a relatively clean isomerization to cis-1. In aqueous environments, trans-1 undergoes a more complicated transformation involving isomerization, protonation, and ligand substitution affording cis-1 and a series of structurally related molecules. From these results, we conclude that the synthesis of [Ru(PTA)4Cl2] (1) affords trans-1, not cis-1, as earlier reports suggest. The water-soluble hydride cis-[Ru(PTA)4H2] (2) has also been synthesized from the reaction of trans-[Ru(PTA)4Cl2] with excess sodium formate. Compound 2 is stable in deoxygenated water and undergoes H/D exchange with D2O (t1/2 approximately equal to 120 min, at 25 degrees C). The solid-state structures of both trans-1 and 2 are described.  相似文献   

6.
线型1,2-邻二萘醌-1-肟(1-nqo)钌配合物的合成   总被引:1,自引:0,他引:1  
报道了含C_(16)长碳链线型1,2-邻二萘醌-1-肟(1-nqo)钌配合物trans-,cis- 及cis-,cis-[Ru(1-nqo)_2(CO)(spy)] (3)及(4)含C_(18)长碳链线型1-nqo钌配合 物cis-,cis-[Ru(1-nqo)_2(CO)(opy)] (5),trans-,trans-[Ru(1-nqo)_2(opy) _2] (6)的合成。利用红外、FAB质谱、核磁共振氢谱及紫外-可见吸收光谱表征配 合物的结构,利用~1H-~1H偶合二维核磁技术对核磁共振峰进行指认。  相似文献   

7.
New macrocyclic malonates 2-5 have been prepared by reaction of malonyl dichloride with alkanediols. Reactions of these cyclo-[n]-alkylmalonates with C60 are highly regioselective. The macrocycles containing identical alkyl spacers selectively form bis- and trisadducts of C60 with rotational symmetry. The addition pattern of the regioselectively formed oligoadducts is determined by the size of the alkyl spacer within the macrocyclic malonate. A variety of bis-, tris-, tetra-, and hexaadducts have been synthesized to show the scope of this approach. "Exotic" addition patterns such as trans-4,trans-4,trans-4, which has been synthesized and completely characterized for the first time, are also accessible by this method. The regioselectivity is ruled by the even distribution of the strain within the macrocyclic malonates containing spacer alkane chains of identical lengths: addition patterns with rotational symmetry provide exactly identical distances of the malonate oxygen atoms and are thus exclusively formed by this method. In contrast, when macrocycles with two different alkyl spacer lengths are used, such as 9 and 10, the reaction exclusively yields C(s)-symmetric bisadducts.  相似文献   

8.
[reactions: see text] The cis-2-alken-4-yn-1-one, 1-phenyl-cis-2-penten-4-yn-1-one (cis-1), readily dimerizes on treatment with weak acid to give the 1,2-difurylethylenes, trans- and cis-1,2 di(2-(5-phenylfuryl))ethene (trans-1 and cis-2), in 62% and 23% yields, respectively. Trimerization of cis-1 to trans,trans-1,2,3-tri(2-(5-phenylfuryl)cyclopropane (4) occurred as a byproduct of treatment with weak acid. These reactions demonstrate the 2-furylcarbenoid reactivity of cis-2-alken-4-yn-1-ones.  相似文献   

9.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

10.
Novel photoswitchable chiral hosts having an axis chiral 2,2'-dihydroxy-1,1'-binaphthyl (BINOL)-appended stiff-stilbene, trans-(R,R)- and -(S,S)-1, were synthesized by palladium-catalyzed Suzuki-Miyaura coupling and low-valence titanium-catalyzed McMurry coupling as key steps, and they were fully characterized by various NMR spectral techniques. The enantiomers of trans-1 showed almost complete mirror images in the CD spectra, where two split Cotton effects (exciton coupling) were observed in the beta-transitions of the naphthyl chromophore at 222 and 235 nm, but no Cotton effect was observed in the stiff-stilbene chromophore at 365 nm. The structures of (R)-10 and trans-(R,R)-1 were confirmed by X-ray structural analysis. The optimized structure of cis-1 by MO calculations has a wide chiral cavity of 7-8 A in diameter, whereas trans-1 cannot form an intramolecular cavity based on the X-ray data. Irradiation of (R,R)-trans-1 with black light (lambda = 365 nm) in CH3CN or benzene at 23 degrees C led to the conversion to the corresponding cis-isomer, as was monitored by 1H NMR, UV-vis, and CD spectra. At the photostationary state, the cis-1/trans-1 ratio was 86/14 in benzene or 75/25 in CH3CN. On the other hand, irradiation of the cis-1/trans-1 (75/25) mixture in CH3CN with an ultra-high-pressure Hg lamp at 23 degrees C (lambda = 410 nm) led to the photostationary state, where the cis-1/trans-1 ratio was estimated to be 9/91 on the basis of the 1H NMR spectra. The cis-trans and trans-cis interconversions could be repeated 10 times without decomposition of the C=C double bond. Thus, a new type of photoswitchable molecule has been developed, and trans-1 and cis-1 were quite durable under irradiation conditions. The guest binding properties of the BINOL moieties of trans- and cis-(R,R)-1 with F-, Cl-, and H2PO4- were examined by 1H NMR titration in CDCl3. Similar interaction with F- and Cl- was observed in trans-1 (host/guest = 1/1, Kassoc = (1.0 +/- 0.13) x 103 for F- and (4.6 +/- 0.72) x 102 M-1 for Cl-) and cis-1 (host/guest = 1/1, Kassoc = (1.0 +/- 0.13) x 103 for F- and (5.9 +/- 0.69) x 10 M-1 for Cl-), but H2PO4- interacted differently: the cis-isomer formed the 1/1 complex (Kassoc = (9.38 +/- 2.67) x 10 M-1), whereas multistep equilibrium was expected for the trans-isomer.  相似文献   

11.
Diffusion of ammonia into CH(2)Cl(2) solutions of the dialkylcyanamide complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = NMe(2), NEt(2), NC(5)H(10)) at 20-25 degrees C leads to metal-mediated cyanamide-ammonia coupling to furnish, depending on reaction time, one or another type of novel bisguanidine compound, i.e. the molecular cis- or trans-[PtCl(2){NH=C(NH(2))R}(2)] (cis- and trans-) and the cationic cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-) complexes. Compounds cis- or trans- were converted to cis- or trans-, accordingly, upon prolonged treatment with NH(3) in CH(2)Cl(2). The ammination of the relevant nitrile complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) in CH(2)Cl(2) solutions affords only the cationic compounds cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-). The formulation of was supported by satisfactory C, H and N elemental analyses, agreeable ESI(+)-MS (or FAB(+)-MS), IR, (1)H and (13)C NMR spectroscopies. The structures of trans-, trans-, cis-, trans-, cis-, and cis- were determined by single-crystal X-ray diffraction disclosing structural features and showing that the ammination gives ligated guanidines and amidines in the E- and Z-forms, respectively, where both correspond to the trans-addition of NH(3) to the nitrile species.  相似文献   

12.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

13.
Enantiomerically pure cis and trans isomers of 4-acetoxy-[eta3(1,2,3)-cyclohexenyl]palladium chloride dimers (cis-1 and trans-1) were prepared from enantiomerically pure trans-1-acetoxy-4-chloro-2-cyclohexene. X-ray analyses of these complexes show that in the trans complex (trans-1) the six-membered ring prefers a chair conformation, whereas in the cis complex (cis-1) the cyclohexenyl ring has a boat conformation. According to the X-ray structure of trans-1 the Pd-C3 bond is shorter than the other allylic terminal palladium-carbon bond (Pd-C1). On the other hand, in cis-1 the Pd-C3 and Pd-C1 bond lengths are identical within the experimental error. The calculated structures (B3PW91/LANL2DZ + P) of trans-1 and cis-1 also display differences in the allylpalladium bonding. The asymmetric allylpalladium bonding in trans-1 is explained on the basis of pi-sigma electronic interactions between the 4-acetoxy substituent and the allyl-metal moiety.  相似文献   

14.
The Bingel functionalisation of C(60) with a structurally novel tether equipped with three reactive malonate groups afforded a C(2v)-symmetrical e(edge),e(face),trans-1 trisadduct in a complete regioselective manner and in an excellent yield of 65%. The [60]fullerene trisadduct showed pronounced ability to crystallise and gave X-ray quality single crystals for analysis.  相似文献   

15.
本文用电镜、电子衍射及DSC等研究了顺1,4PB及反1,4PB的共混及共聚物的形态结构。观察了室温下两相结构分布随组分变化的规律及反1,4PB含量对顺1,4PB低温结晶、片层厚度和球晶大小的影响。进一步讨论了这两种不能形成类质同象结构物质结晶的相互影响。  相似文献   

16.
We have studied the base-promoted heterocyclization of alkyl N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)carbamates and N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamides, investigating the effect of the nitrogen protecting group and the relative configuration of the leaving group at C3 and C4 on the outcome of this reaction. We have observed that the sodium hydride-promoted heterocyclization of alkyl N-(cis-3,trans-4-dibromocyclohex-1-yl)carbamates (10, 12, 14, 16, 18) is a convenient method for the synthesis of 7-azabicyclo[2.2.1]heptane derivatives. For instance, the reaction of tert-butyl N-(cis-3,trans-4-dibromocyclohex-1-yl)carbamate (10) with sodium hydride in DMF at room temperature provides 2-bromo-7-[(tert-butoxy)carbonyl]-7-azabicyclo[2.2.1]heptane (2) (52% yield), whose t-BuOK-promoted hydrogen bromide elimination affords 7-[(tert-butoxy)carbonyl]-7-azabicyclo[2.2.1]hept-2-ene (31) in 78% yield, an intermediate in the total synthesis of epibatidine (1). However, the NaH/DMF-mediated heterocyclization of alkyl N-(trans-3,cis-4-dibromocyclohex-1-yl)carbamates (11, 13) is a more structure dependent reaction, where the nucleophilic attack of the oxygen atom of the protecting group controls the outcome of the reaction, giving rise to benzooxazolone and 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives, respectively, from low to moderate yields, in complex reaction mixtures. Conversely, the NaH/DMF heterocyclizations of N-(cis-3,trans-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamide (40) or N-(trans-3,cis-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamide (42) are very clean reactions giving 7-azabicyclo[2.2.1]heptane or 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives, respectively, in good yields. Finally, a mechanistic investigation, based on DFT calculations, has been carried out to rationalize the formation of the different adducts.  相似文献   

17.
Iminoacylation of acetone oxime Me(2)C[double bond, length as m-dash]NOH upon reaction with trans-[PtCl(2)(NCCH(2)CO(2)Me)(2)] and [2 + 3] cycloaddition of acyclic nitrone (-)O(+)N(Me) = C(H)(C(6)H(4)Me-4) to a nitrile ligand in lead to the formation of mono-imine trans-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] [imine-a = NH[double bond, length as m-dash]C(CH(2)CO(2)Me)ON = CMe(2)] and mono-oxadiazoline trans-[PtCl(2)(oxadiazoline-a)(NCCH(2)CO(2)Me)] [oxadiazoline-a = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)ON(Me)C[upper bond 1 end](H)(C(6)H(4)Me-4)] unsymmetric mixed ligand complexes, respectively, as the main products. Reactions of or with acetone oxime , cyclic nitrone (-)O(+)N = CHCH(2)CH(2)C[upper bond 1 end]Me(2) or N,N-diethylhydroxylamine give access, in moderate to good yields, to the unsymmetric mixed ligand oxadiazoline and/or imine complexes trans-[PtCl(2)(oxadiazoline-a)(imine-a)] , trans-[PtCl(2)(oxadiazoline-a)(oxadiazoline-b)] [oxadiazoline-b = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)O[lower bond 1 start]NC[upper bond 1 end](H)CH(2)CH(2)C[lower bond 1 end]Me(2)], trans-[PtCl(2)(imine-a)(imine-b)] [imine-b = NH = C(CH(2)CO(2)Me)ONEt(2)] or trans-[PtCl(2)(imine-a)(oxadiazoline-b)] . The cis mono-imine mixed ligand complex cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] is the major product from the reaction of cis-[PtCl(2)(NCCH(2)CO(2)Me)(2)] with the oxime , while the di-imine compound cis-[PtCl(2)(imine-a)(2)] is a minor product. Reaction of cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] with N,N-diethylhydroxylamine or the cyclic nitrone affords, in good yields, the unsymmetric mixed ligand complexes cis-[PtCl(2)(imine-a)(imine-b)] or cis-[PtCl(2)(imine-a)(oxadiazoline-b)] , respectively. All these complexes were characterized by elemental analyses, IR and (1)H, (13)C and (195)Pt NMR spectroscopies, and FAB(+)-MS. The X-ray structural analysis of trans-[PtCl(2){NH=C(CH(2)CO(2)Me)ON=CMe(2)}(NCCH(2)CO(2)Me)] is also reported.  相似文献   

18.
Toluene-d(8) solutions of cis- and trans-cyclooctene (cis- and trans-1a) as well as (Z)- and (E)-1-methylcyclooctene (cis- and trans-1b) have been irradiated at temperatures between -95 and +110 degrees C in the presence of benzophenone (BP) to afford mixtures of the cis- and trans-configured oxetanes 2a,b and the regioisomeric 2b'. Correspondingly, benzoquinone (BQ) gave with cis- and trans-1a the cycloadducts cis- and trans-3a. The cis/trans diastereomeric ratios of the [2 + 2]-cycloadducts 2 and 3 display a strong temperature dependence; with cis- and trans-1a or cis-1b as starting materials, the diastereoselectivity of the oxetane formation is high at low temperature, under preservation of the initial cyclooctene configuration. With increasing temperature, the cis diastereoselectivity decreases continuously for the cis-cyclooctenes; in the case of the cis-1a, the diastereoselectivity is even switched to trans (cis/trans ca. 20:80) at very high temperatures. For the strained trans-1a, the trans-oxetanes are strongly preferred over the entire temperature range, with only minor leakage (up to 10%) to the cis-oxetanes at very high temperatures. Oxetane formation is accompanied by nonthermal trans-to-cis isomerization of the cyclooctene. The methyl-substituted trans-1b constitutes an exceptional substrate; it displays cis diastereoselectivity in the [2 + 2] photocycloaddition at low temperatures for both regioisomers 2b and 2b', and the trans selectivity increases at moderate temperature (cis/trans = 4:96), to decrease again at high temperature, especially for the minor regioisomer 2b'. This complex temperature behavior of the cis/trans diastereoselectivity may be rationalized in terms of the triplet-diradical mechanism of the Paternò-Büchi reaction. We propose that the cyclooctene may be competitively attacked by the triplet-excited ketone from the higher (syn) or the less (anti) substituted side; such syn and anti trajectories have hitherto not been considered. To account for the unusual temperature behavior in the diastereoselectivity of the present [2 + 2] photocycloaddition, we suggest that temperature-dependent conformational changes of the resulting triplet preoxetane diradicals compete with their cyclization to the cis/trans-oxetane diastereomers and retro cleavage to the cis-cyclooctene.  相似文献   

19.
[reaction: see text] An enantioselective preparation of the four diastereomeric 3-amino-2,3,6-trideoxy-hexoses, key components of anthracycline antibiotics, has been developed. Sharpless catalytic asymmetric epoxidation of the (2E)-2,5-hexadien-1-ol, regioselective ring opening with azide, followed by convenient functional group transformations, afforded the key aldehydes cis- or trans-6 in any configuration. The diastereoselective addition of methylmetal reagents to these aldehydes followed by ozonolysis gives access in a completely stereocontrolled manner to the four isomeric trideoxyaminosugars.  相似文献   

20.
The reaction between an iminophosphorane with furan-2-carbaldehyde, thiophene-2-carbaldehyde, furan-3-carbaldehyde, and thiophene-3-carbaldehyde at 60 degrees C gives the corresponding trans imines in 53-84% yields, while the same reaction at 100 degrees C gives a mixture of the corresponding trans and cis imines. Whether the iminophosphorane reacted with 5-nitrofuran-2-carbaldehyde or 5-nitrothiophene-2-carbaldehyde only the trans imines were obtained in 85-89% yields. The irradiation of the imines obtained from thiophene-2-carbaldehyde and thiophene-3-carbaldehyde gave the corresponding photocyclization products. Cis/trans stereochemistry of the imines can be assigned simulating the UV-vis spectra. In the case of the imine from furan-2-carbaldehyde the computed spectra are characterized by an intense absorption at 361 and 357 nm respectively for the trans-1 and trans-2 structures. No other absorptions of comparable intensity have been predicted: the agreement with the experimental spectrum can be considered good. Furthermore, the experimental weak peaks at 280 and 270 nm can be associated to the computed transitions at 278 and 260 nm for the trans-1 isomer. Several minima of the energy surface can be assigned to the cis isomer, and they all present a very similar energy. The structures of the cis-1 and cis-2 isomers present quite coincident computed electronic spectra. In both cases, the computed spectrum shows two principal features. For the cis-1 structure, the first characteristic absorption is located at 414 nm and the second one at 284 nm. For the cis-2 structure, the first feature is located at 412 nm and the second one at 286 nm. The second transition is computed somewhat more intense. The experimental spectrum could be the consequence of similar populations of the planar cis structure (cis-3) and nonplanar cis structures (cis-1, cis-2, and their enantiomers).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号