首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydropyrolysis of rice husk was performed using nickel-loaded Loy Yang brown coal char (Ni/LY) catalyst in a fluidized bed reactor at 500, 550, 600 and 650 °C with an aim to study the influence of catalyst and catalytic hydropyrolysis temperature on product yields and the composition of bio-oil. An inexpensive Ni/LY char was prepared by the ion-exchange method with nickel loading rate of 9 ± 1 wt.%. Nickel particles which dispersed well in Loy Yang brown coal char showed a large specific surface area of Ni/LY char of 350 m2/g. The effects of catalytic activity and hydropyrolysis temperature of rice husk using Ni/LY char were examined at the optimal condition for bio-oil yield (i.e., pyrolysis temperature 500 °C, static bed height 5 cm, and gas flow rate 2 L/min without catalyst). In the presence of catalyst, the oxygen content of bio-oil decreased by about 16% compared with that of non-catalyst. Raising the temperature from 500 to 650 °C reduced the oxygen content of bio-oil from 27.50% to 21.50%. Bio-oil yields decreased while gas yields and water content increased with increasing temperature due to more oxygen being converted into H2O, CO2, and CO. The decreasing of the oxygen content contributed to a remarkable increase in the heating value of bio-oil. The characteristics of bio-oil were analyzed by Karl Fischer, GC/MS, GPC, FT-IR, and CHN elemental analysis. The result indicated that the hydropyrolysis of rice husk using Ni/LY char at high temperature can be used to improved the quality of bio-oil to level suitable for a potential liquid fuel and chemical feedstock.  相似文献   

2.
Rice husk was fast pyrolysed at temperatures between 420 °C and 540 °C in a fluidized bed, and the main product of bio-oil is obtained. The experimental result shows that the highest bio-oil yield of 56 wt% was obtained at 465 °C for rice husk. Chemical composition of bio-oil acquired was analyzed by GC–MS and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that bio-oil obtained can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles. Furthermore, the energy performance of the pyrolysis process was analyzed.  相似文献   

3.
A micro-bomb combustion calorimeter recently designed for samples of mass   80 mg has been improved and tested with m -methoxybenzoic acid in order to verify the chemistry of the combustion process and the accuracy of the energy corrections involved in the analysis of results. From measurements in this calorimeter, the standard massic energy of combustion of 1,2,4-triazole was determined to beΔcuo =   (19200.3  ±  3.4)J · g  1. Some new measurements with our macro combustion calorimeter confirm an earlier result from this laboratory of   (19203.1  ±  1.2)J · g  1. Determination of the purity by d.s.c. of 1,2,4-triazole purified some 10 years ago reveals that samples of this compound remained unchanged and suggest that 1,2,4-triazole be used as a possible reference material for organic compounds with a high content of nitrogen. From the experimental results with the micro-bomb combustion calorimeter, the actual and earlier results from macro-bomb combustion calorimetry, and those obtained in other laboratories, the standard massic energy of combustion of 1,2,4-triazole was deduced to beΔcuo =   (19202.5  ±  1.7)J · g  1.  相似文献   

4.
We demonstrate the synthesis of multifunctional 3,4-dihydroquinoxalin-2-amine derivatives 4 through a three-component condensation reactions of a substituted o-phenylenediamines 1 (OPDA), diverse ketones 2 and various isocyanides 3 in the presence of a catalytic amount of p-toluenesulfonic acid (PTSA) affording excellent yields (82–96%) and 10 mol % of silica gel supported sulfuric acid with good yields (85–98%) in ethanol at room temperature (2–4 h). We also carried out the anti-neuroinflammatory activity of 3,4-dihydroquinoxalin-2-amine derivatives and some of the compounds exhibited good activity.  相似文献   

5.
We investigated the efficiency of pervaporation separation of methanol/methyl-t-butyl ether (MTBE) mixture through chitosan composite membrane modified with sulfuric acid and four surfactants. Effects of feed concentration, temperature, crosslinking degree and type of surfactants were studied. The chitosan composite membrane modified with sulfuric acid showed the pervaporation performance of over 70 wt% methanol in the permeate and flux of 100 g/m2 h measured at 25°C. At 50°C, the separation factor decreased while the flux increased exceeding 300 g/m2 h. For the membrane complexed with surfactants, the permeate showed 98.3 wt% methanol concentration and 470 g/m2 h of permeate flux at 25°C. With increasing operating temperature, the permeate flux remarkably increased to 1170 g/m2 h and the permeate showed 97.8 wt% methanol concentrations.  相似文献   

6.
Monascus fermented rice (MFR) or angkak is a product resulting from rice fermentation using Monascus sp. For the application in functional food of MFR extract, the encapsulation and stability of this pigment have been studied. The extract of MFR was evaluated its stability to that of pH (2-6), temperature (40-70oC) and UV light exposure. Encapsulation of MFR was carried out by spray drying (SD) and freeze drying (FD) methods with dextrin as encapsulating agent. The encapsulated products was analyzed the encapsulation yields, hygroscopicity and monacolin K content. The absorbance of MFR extracts was increased by increasing the pH. The extract was stable after heat treatment at 50oC, but the absorbance was increased gradually when heating elevated up to 70oC. The absorbance tend to stable after exposed to UV light for 5 hours. Encapsulation yields of MFR extract by SD method (34.00%) was lower than by FD method (89.71%). Monacolin K content of encapsulated product by SD method was 898.7 μg g-1 and by FD method was 1458.3 μg g-1. However, the product by FD method was more hygroscopic compared to SD method.  相似文献   

7.
The natural vermiculites from different localities (Bulgaria, Brazil, and South Africa) after acid treatment were used for this study. Differently acidified vermiculite samples were prepared from the natural vermiculite sample using different concentrations of hydrochloric acid (0.5 M and 1 M) and different reaction time (2 h and 4 h) at 80 °C. Natural vermiculites and acid treated vermiculites were analyzed by elemental analysis, X-ray diffraction (XRD) analysis and studied using Fourier transform infrared (FTIR) spectroscopy and dispersive Raman spectroscopy. According to the XRD analysis vermiculites are interstratified structures created in the different two-one-zero sheet hydrated phases. Ratio of intensities of spectrally deconvoluted bands at 1075 cm−1 and 1000 cm−1 (stretching vibration of SiO bonds of vermiculites and stretching vibration of SiO bonds of amorphous silica, respectively) was used to determine the content of amorphous silica in acid treated vermiculite samples. Study of the infrared and Raman spectra of the acidified vermiculites enable a comparison of these two spectroscopic data that have not yet been performed.  相似文献   

8.
An isoperibolic micro-combustion calorimeter was designed, built and set up in our laboratory, taking as base a 1107 Parr combustion bomb of 22 cm3 of volume. Taken into account the geometrical form of the bomb, it was designed and constructed a vessel and a submarine chamber in brass. All of the pieces of the calorimeter were chromium-plated to reduce heat loss by radiation. The calorimeter was calibrated by using pellets of standard benzoic acid (mass approximate of 40 mg) leading to the energy equivalent of ε(calor) = (1283.8 ± 0.6) J · K−1. In order to test the calorimeter, combustion experiments of salicylic acid were performed leading to a value of combustion energy of Δcu = −(21,888.8 ± 10.9) J · g−1, which agrees with the reported literature values. The combustion of piperonylic acid was carried out as a further test leading to a value of combustion energy of Δcu = −(20,215.9 ± 10.4) J · g−1 in accordance with the reported literature value. The uncertainty of the calibration and the combustion of salicylic acid and piperonylic acid was 0.05%.  相似文献   

9.
Samples of lignocellulosic material, stem of date palm (Phoenix dactylifera), were carbonized at different temperatures (400–600 °C) to investigate the effects of their impregnation with aqueous solution of either phosphoric acid (85 wt%) or potassium hydroxide (3 wt%). The products were characterized using BET nitrogen adsorption, helium pycnometry, Scanning Electron Microscopy (SEM) and oil adsorption from oil–water emulsion (oil viscosity, 60 mPa s at 25 °C). True densities of the products generally increased with increase in carbonization temperature. Impregnated samples (acid/base) showed wider differences in densities at 400 (1.978/1.375 g/cm3) than at 600 °C (1.955/2.010 g/cm3). Without impregnation, the sample carbonized at 600 °C showed higher density of 2.190 g/cm3. This sample has impervious surface with BET surface area of 124 m2/g. Acid-impregnated sample carbonized at 500 °C has the highest surface area of 1100 m2/g and most regular pores as evidenced by SEM micrographs. The amounts of oil adsorbed decreased with increase in carbonization temperature. Without impregnation, sample carbonized at 400 °C exhibited equilibrium adsorption of 4 g/g which decreases to about a half for sample carbonized at 600 °C. Impregnation led to different adsorptive capacities. There are respective increase (48 wt%) and decrease (5 wt%) by the acid- or base-impregnated samples carbonized at 600 °C. This suggests higher occurrence of oil adsorption-enhancing surface functional groups such as carbonyl, carboxyl and phenolic in the former sample.  相似文献   

10.
This work aims to contribute to the characterization of the electrodialysis (ED) of aqueous sulfuric acid–copper sulfate solutions. The presence of impurities such as As and Sb, typical of copper electrorefining electrolytes, is also studied. Results from kinetic studies carried out in ED cells with and without re-circulation are presented. The concentrations were: 3–9 g l−1 copper, 50 g l−1 sulfuric acid, 3 g l−1 arsenic and 0.025 g l−1 antimony; the temperatures, 22 and 44 °C; the transport rates, depending on experimental conditions, 0.2–0.6 mol h−1 m−2of membrane for copper, 0.65–2.8 for sulfate, and 0.016–0.03 for arsenic. A speciation model has been developed and applied in order to interpret the experimental results and the performance of the studied cells has been evaluated. The main conclusion is that ED can be applied to the separation and concentration of chemical species in these systems.  相似文献   

11.
The standard ( po =  0.1 MPa) molar enthalpies of formation ΔfHmo, at the temperature 298.15 K, for crystalline 2,3,4-, 2,4,5-, 2,4,6- and 3,4,5-trichloroaniline were derived from the molar enthalpies of combustion ΔcHmoin oxygen using rotating bomb combustion calorimetry. The reaction products were CO2(g), N2(g), and HCl · 600H2O(l). The standard molar enthalpies of sublimation ΔcrgHmoat T =  298.15 K were measured by Calvet microcalorimetry. The results are as follows: The derived standard molar enthalpies of formation of the gaseous compounds were compared with values estimated by assuming the enthalpy increment for substitution of chlorine in aniline to be the same as for substitution into benzene.  相似文献   

12.
The standard (po =  0.1 MPa) molar enthalpies of formation for 2,3-, 2,4-, 2,5-, 3,4- and 3,5- trans -dimethoxycinnamic acids, in the gaseous phase, were derived from the standard molar enthalpies of combustion in oxygen, of the crystalline compounds, determined by static bomb combustion calorimetry at T =  298.15 K and from the literature values for the respective enthalpies of sublimation.  相似文献   

13.
The standard potential of the (Ag, AgCl) electrode Eo, the standard second ionization constant of sulfuric acid K2, and the standard association constant of the ion pair [MgSO4]o, K in {0.03226CO(NH2)2 +  0.96774 H2O } at five temperatures from 278.15 K to 318.15 K were determined from precise e.m.f. measurements of different cells without liquid junction. The dependence of p K on temperature T is expressed by the empirical equation pK =  6.617    777.9 · (K / T)    0.02001 · (T / K). The other thermodynamic functions of the association process were also calculated and show that the driving force for the process is the entropy of association.  相似文献   

14.
Copper foam has recently being applied to replace aluminium as heat sink. In this study, copper foam was manufactured via metal injection molding technique. Copper feedstock were prepared comprising 0 wt.%, 30 wt.% and 40 wt.% of potassium carbonate into copper powder to produce open pore cell structure, which also mixed together with a binder system consisting palm stearin (PS), polyethylene (PE) and stearic acid (SA). The feedstock was then injection molded into tensile shape test piece prior to solvent extracted in heptane prior to sintering using tube furnace at 850oC for 4 hours in nitrogen atmosphere. The sintered samples were immersed in warm water to dissolve the carbonates. Copper foam has successfully manufactured at 850oC for 4 hours in nitrogen atmosphere followed by the dissolution process. The porosity value increased as the addition of potassium carbonate increased from 0 to 40 wt.% which given the highest value of 52.985% porosity and thermal conductivity of 520.46 W/m.K.  相似文献   

15.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following six compounds: 2-methyl-3-nitrobenzoic acid, between T =  357.16 K and T =  371.16 K; 2-methyl-6-nitrobenzoic acid, between T =  355.16 K and T =  369.16 K; 3-methyl-2-nitrobenzoic acid, between T =  371.16 K and T =  385.14 K; 3-methyl-4-nitrobenzoic acid, between T =  363.21 K and T =  379.16 K; 4-methyl-3-nitrobenzoic acid, between T =  363.10 K and T =  377.18 K; 5-methyl-2-nitrobenzoic acid, between T =  355.18 K and T =  371.08 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds the standard, po =  105Pa, molar enthalpies ΔcrgHmo, entropies ΔcrgSmoand Gibbs energies ΔcrgGmoof sublimation at T =  298.15 K, were derived:  相似文献   

16.
The effects of pyrolysis temperature and heating rate on the porous structure characteristics of rice straw chars were investigated. The pyrolysis was done at atmospheric pressure and at temperatures ranging from 600 to 1000 °C under low heating rate (LHR) and high heating rates (HHR) conditions. The chars were characterized by ultimate analysis, field emission scanning electron microscope (FESEM), helium density measurement and N2 physisorption method. The results showed that temperature had obvious influence on the char porous characteristics. The char yield decreased by approximately 16% with increasing temperature from 600 to 1000 °C. The carbon structure shrinkage and pore narrowing occurred above 600 °C. The shrinkage of carbon skeleton increased by more than 22% with temperatures rising from 600 to 1000 °C. At HHR condition, progressive increases in porosity development with increasing pyrolysis temperature occurred, whereas a maximum porosity development appeared at 900 °C. The total surface area (Stotal) and micropore surface area (Smicro) reached maximum values of 30.94 and 21.81 m2/g at 900 °C and decreased slightly at higher temperatures. The influence of heating rate on Stotal and Smicro was less significant than that of pyrolysis temperature. The pore surface fractal dimension and average pore diameter showed a good linear relationship.  相似文献   

17.
A micro static-bomb combustion calorimeter, developed from a 1107 Parr semi-micro bomb, has been provided with a new micro-bomb and calorimetric bucket. In the best conditions of operation, the energy equivalent of this calorimetric arrangement is just ε(calor)=(731.82 ± 0.22) J · K−1, which means an uncertainty of 0.03 per cent for the calibration with benzoic acid NIST 39j. This combustion calorimeter has been used in the measurement of the enthalpy of combustion of the succinic acid and acetanilide, giving −(1489.3 ± 1.6) kJ · mol−1 and −(4222.5 ± 1.1) kJ · mol−1, respectively, for these substances.  相似文献   

18.
A cost-effective cell fabrication process was developed for intermediate temperature solid oxide fuel cells (IT-SOFCs). Co-doped ceria Ce0.8Gd0.05Y0.15O1.9 (GYDC) was synthesized by carbonate co-precipitation method. Lithiated NiO was prepared by glycine-nitrate combustion method and adopted as cathode material for IT-SOFCs. Single cell was fabricated by one-step dry-pressing and co-firing anode, anode functional layer (AFL), electrolyte and cathode together at 1200 °C for 4 h. The cell presented decent performance and an overall electrode polarization resistance of 0.54 Ω cm2 has been achieved at 600 °C. These results demonstrate the possibility of using lithiated NiO as cathode material for ceria-based IT-SOFCs and the development of affordable fuel cell devices is encouraged.  相似文献   

19.
The enthalpies of combustion and of sublimation, respectively, of the three isomeric nitrobenzonitriles have been measured: o-, {(−3456.3±2.9), (88.1±1.4)} kJ·mol−1; m-, {(−3442.8±3.3), (92.8±0.3)} kJ·mol−1; p-, {(−3448.2±3.6), (91.1±1.3)} kJ·mol−1. In turn, from these values, the standard molar enthalpies of formation for the condensed and gaseous state, respectively, have been derived: o-, {(130.1±3.1), (218.2±3.4)} kJ·mol−1; m-, {(116.5±3.5), (209.3±3.5)} kJ·mol−1; p-, {(122.0±3.8), (213.1±4.0)} kJ·mol−1. Destabilization energies associated with the presence of the two electron-withdrawing groups have been determined, for o-, m-, and p-nitrobenzonitrile, {(17.6±4.1), (8.7±4.2), and (12.5±4.6)} kJ·mol−1, respectively, and are consistent with those obtained for the corresponding sets of isomeric methyl benzenedicarboxylates, dicyanobenzenes, dinitrobenzenes, and (neutral and ionized) nitrobenzoic acids.  相似文献   

20.
Levan is fructose polymer as the result of biosynthesis by levansucrase. This study is aimed to explore the potential of moderate halophilic bacteria Bacillus licheniformis BK AG21 isolated from Bledug Kuwu, Purwodadi Central Java, in producing levan. This bacteria displayed positive potential in producing levan based on the appearance of slime mucoid on a sucrose medium. The optimum production of levan was attained when the culture medium containing sucrose and peptone as respective carbon and nitrogen sources was shaking incubated with speed of 150 rpm for 24 hours at 37 oC. Thermal gravimetric analysis revealed that levan produced by B. licheniformis BK AG21 decomposed at 214 oC. The structure of the isolated levan was elucidated with FTIR, 1H and 13C NMR spectroscopies. Based on the obtained spectroscopic data, the isolated levan was composed of β-(2,6)-linkages of fructose residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号