首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control over the spatial distribution of components in metal–organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal–organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core–shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core–shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.

Core–shell metal–organic framework nanoparticles have been synthesised in which the internal interface and distribution of components is found to be highly tunable using simple variations in reaction conditions.  相似文献   

2.
We report a general method for the synthesis of free-standing, self-assembled MOF monolayers (SAMMs) at an air–water interface using polymer-brush coated MOF nanoparticles. UiO-66, UiO-66-NH2, and MIL-88B-NH2 were functionalized with a catechol-bound chain-transfer agent (CTA) to graft poly(methyl methacrylate) (PMMA) from the surface of the MOF using reversible addition-fragmentation chain transfer polymerization (RAFT). The polymer-coated MOFs were self-assembled at the air–water interface into monolayer films ∼250 nm thick and capable of self-supporting at a total area of 40 mm2. Mixed-particle films were prepared through the assembly of MOF mixtures, while multilayer films were achieved through sequential transfer of the monolayers to a glass slide substrate. This method offers a modular and generalizable route to fabricate thin-films with inherent porosity and sub-micron thickness composed of a variety of MOF particles and functionalities.

We report a general method for the synthesis of free-standing, self-assembled MOF monolayers (SAMMs) at an air–water interface using polymer-brush coated MOF nanoparticles.  相似文献   

3.
Electrosynthetic techniques are gaining prominence across the fields of chemistry, engineering and energy science. However, most works within the direction of synthetic heterogeneous electrocatalysis focus on water electrolysis and CO2 reduction. In this work, we moved to expand the scope of small molecule electrosynthesis by developing a synthetic scheme which couples CO2 and NH3 at a gas–liquid–solid boundary to produce species with C–N bonds. Specifically, by bringing in CO2 from the gas phase and NH3 from the liquid phase together over solid copper catalysts, we have succeeded in forming formamide and acetamide products for the first time from these reactants. In a subsequent complementary step, we have combined electrochemical analysis and a newly developed operando spectroelectrochemical method, capable of probing the aforementioned gas–liquid–solid boundary, to extract an initial level of mechanistic analysis regarding the reaction pathways of these reactions and the current system''s limitations. We believe that the development and understanding of this set of reaction pathways will play significant role in expanding the community''s understanding of on-surface electrosynthetic reactions as well as push this set of inherently sustainable technologies towards widespread applicability.

Electrocatalytic formation of C–N bonds was achieved through the electrolysis of CO2 and NH3 over Cu catalysts. A combined analytical and spectroscopic approach gave insights into the reaction mechanism leading to formamide and acetamide products.  相似文献   

4.
The Diels–Alder reactions between cyclopentadiene and various α,β-unsaturated aldehyde, imine, and iminium dienophiles were quantum chemically studied using a combined density functional theory and coupled-cluster theory approach. Simple iminium catalysts accelerate the Diels–Alder reactions by lowering the reaction barrier up to 20 kcal mol−1 compared to the parent aldehyde and imine reactions. Our detailed activation strain and Kohn–Sham molecular orbital analyses reveal that the iminium catalysts enhance the reactivity by reducing the steric (Pauli) repulsion between the diene and dienophile, which originates from both a more asynchronous reaction mode and a more significant polarization of the π-system away from the incoming diene compared to aldehyde and imine analogs. Notably, we establish that the driving force behind the asynchronicity of the herein studied Diels–Alder reactions is the relief of destabilizing steric (Pauli) repulsion and not the orbital interaction between the terminal carbon of the dienophile and the diene, which is the widely accepted rationale.

Quantum chemical activation strain analyses revealed that iminium catalysts accelerate Diels–Alder reactions by reducing the Pauli repulsion between reactants.  相似文献   

5.
Photosensitization reactions are believed to provide a key contribution to the overall oxidation chemistry of the Earth''s atmosphere. Generally, these processes take place on the surface of aqueous aerosols, where organic surfactants accumulate and react, either directly or indirectly, with the activated photosensitizer. However, the mechanisms involved in these important interfacial phenomena are still poorly known. This work sheds light on the reaction mechanisms of the photosensitizer imidazole-2-carboxaldehyde through ab initio (QM/MM) molecular dynamics simulations and high-level ab initio calculations. The nature of the lowest excited states of the system (singlets and triplets) is described in detail for the first time in the gas phase, in bulk water, and at the air–water interface, and possible intersystem crossing mechanisms leading to the reactive triplet state are analyzed. Moreover, the reactive triplet state is shown to be unstable at the air–water surface in a pure water aerosol. The combination of this finding with the results obtained for simple surfactant-photosensitizer models, together with experimental data from the literature, suggests that photosensitization reactions assisted by imidazole-2-carboxaldehyde at the surface of aqueous droplets can only occur in the presence of surfactant species, such as fatty acids, that stabilize the photoactivated triplet at the interface. These findings should help the interpretation of field measurements and the design of new laboratory experiments to better understand atmospheric photosensitization processes.

First-principles molecular dynamics simulations of imidazole-2-carboxaldehyde at the air–water interface highlight the role of surfactants in stabilising the reactive triplet state involved in photosensitisation reactions in aqueous aerosols.  相似文献   

6.
A visible-light-induced palladium-catalyzed Dowd–Beckwith ring expansion/C–C bond formation cascade is described. A range of six to nine-membered β-alkenylated cyclic ketones possessing a quaternary carbon center were accessed under mild conditions. Besides styrenes, the electron-rich alkenes such as silyl enol ethers and enamides were also compatible, providing the desired β-alkylated cyclic ketones in moderate to good yields.

An intermolecular Dowd–Beckwith ring expansion/C–C bond formation is achieved through light-induced palladium catalysis. Not only styrenes but also the electron-rich alkenes such as silyl enol ethers and enamides were also compatible in this reaction.  相似文献   

7.
Understanding and controlling molecular recognition mechanisms at a chiral solid interface is a continuously addressed challenge in heterogeneous catalysis. Here, the molecular recognition of a chiral peptide-functionalized metal–organic framework (MOF) catalyst towards a pro-chiral substrate is evaluated experimentally and in silico. The MIL-101 metal–organic framework is used as a macroligand for hosting a Noyori-type chiral ruthenium molecular catalyst, namely (benzene)Ru@MIL-101-NH-Gly-Pro. Its catalytic perfomance toward the asymmetric transfer hydrogenation (ATH) of acetophenone into R- and S-phenylethanol are assessed. The excellent match between the experimentally obtained enantiomeric excesses and the computational outcomes provides a robust atomic-level rationale for the observed product selectivities. The unprecedented role of the MOF in confining the molecular Ru-catalyst and in determining the access of the prochiral substrate to the active site is revealed in terms of highly face-specific host–guest interactions. The predicted surface-specific face differentiation of the prochiral substrate is experimentally corroborated since a three-fold increase in enantiomeric excess is obtained with the heterogeneous MOF-based catalyst when compared to its homogeneous molecular counterpart.

Understanding and controlling molecular recognition mechanisms at a chiral solid interface has been addressed in metal–organic framework catalysts for the asymmetric transfer hydrogenation reaction.  相似文献   

8.
C–H functionalisation is one of the cornerstones of modern catalysis and remains a topic of contemporary interest due its high efficiency and atom-economy. Among these reactions, C–H borylation, that is the transformation of C–H to C–B bonds, has experienced a fast development because of the wide utility of organoboron reagents as synthetic intermediates. The mechanistic background is now well-understood and the role of transition metal boryl or σ-borane intermediates in this transformation is well documented. This mini-review focuses on efforts made by our group, and others, to establish palladium- and calcium-catalysed methods for C–H metalation employing heavier main group elements (M = Al, Mg). These are new catalytic reactions first accomplished in our group that we have termed C–H alumination and magnesiation respectively. Unusual heterometallic complexes have been identified as key on-cycle intermediates and their unique reactivity is discussed in the context of new catalytic pathways for C–H functionalisation. Hence, this mini-review summarises the recent progress in the area of C–H metalation reactions as well as the new opportunities that may arise from this concept.

This highlight focuses on recent efforts to establish catalytic methods for C–H functionalisation with main group metals (M = Al, Mg).  相似文献   

9.
The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones. The use of a base is essential for the reaction to proceed. The reaction proceeds, even in the absence of a ligand, and under mild reaction conditions (40 °C). An electron-donating group on the aromatic ring facilitates the reaction. The reaction was also applicable to carbamate (C–O bond activation), methylthio (C–S bond activation), and cyano (C–CN bond activation) groups as leaving groups.

The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones.  相似文献   

10.
A selective, sequential C–O decarboxylative vinylation/C–H arylation of cyclic alcohol derivatives enabled by visible-light photoredox/nickel dual catalysis is described. This protocol utilizes a multicomponent radical cascade process, i.e. decarboxylative vinylation/1,5-HAT/aryl cross-coupling, to achieve efficient, site-selective dual-functionalization of saturated cyclic hydrocarbons in one single operation. This synergistic protocol provides straightforward access to sp3-enriched scaffolds and an alternative retrosynthetic disconnection to diversely functionalized saturated ring systems from the simple starting materials.

A selective, sequential C–O decarboxylative vinylation/C–H arylation of cyclic alcohol derivatives enabled by visible-light photoredox/nickel dual catalysis has been described.  相似文献   

11.
The first examples of a highly efficient and enantioselective carbene-mediated insertion reaction, from a sulfur ylide, are described. By way of a catalytic asymmetric insertion reaction into N–H bonds from carbonyl sulfoxonium ylides and anilines, using a copper-bifunctional squaramide cooperative catalysis approach, thirty-seven α-arylglycine esters were synthesized in enantiomeric ratios up to 92 : 8 (99 : 1 after a single recrystallization) and reaction yields ranging between 49–96%. Furthermore, the protocol benefits from quick reaction times and is conducted in a straightforward manner.

The first examples of a highly efficient and enantioselective carbene-mediated insertion reaction, from a sulfur ylide, are described.  相似文献   

12.
Selective functionalization of ubiquitous unactivated C–H bonds is a continuous quest for synthetic organic chemists. In addition to transition metal catalysis, which typically operates under a two-electron manifold, a recent renaissance in the radical approach relying on the hydrogen atom transfer (HAT) process has led to tremendous growth in the area. Despite several challenges, protocols proceeding via HAT are highly sought after as they allow for relatively easy activation of inert C–H bonds under mild conditions leading to a broader scope and higher functional group tolerance and sometimes complementary reactivity over methods relying on traditional transition metal catalysis. A number of methods operating via heteroatom-based HAT have been extensively reported over the past few years, while methods employing more challenging carbon analogues have been less explored. Recent developments of mild methodologies for generation of various carbon-centered radical species enabled their utilization in the HAT process, which, in turn, led to the development of remote C(sp3)–H functionalization reactions of alcohols, amines, amides and related compounds. This review covers mostly recent advances in C–H functionalization reactions involving the HAT step to carbon-centered radicals.

Intramolecular and intermolecular HAT to C-centered radicals enables selective C–H functionalization of organic molecules.  相似文献   

13.
A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage. Compared to the simple N–H insertion manipulation of diazo, this method elegantly accomplishes a tandem N–H insertion/SEAr/C–C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.

A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage.  相似文献   

14.
Dynamic interplay between peptide synthesis and membrane assembly would have been crucial for the emergence of protocells on the prebiotic Earth. However, the effect of membrane-forming amphiphiles on peptide synthesis, under prebiotically plausible conditions, remains relatively unexplored. Here we discern the effect of a phospholipid on peptide synthesis using a non-activated amino acid, under wet–dry cycles. We report two competing processes simultaneously forming peptides and N-acyl amino acids (NAAs) in a single-pot reaction from a common set of reactants. NAA synthesis occurs via an ester–amide exchange, which is the first demonstration of this phenomenon in a lipid–amino acid system. Furthermore, NAAs self-assemble into vesicles at acidic pH, signifying their ability to form protocellular membranes under acidic geothermal conditions. Our work highlights the importance of exploring the co-evolutionary interactions between membrane assembly and peptide synthesis, having implications for the emergence of hitherto uncharacterized compounds of unknown prebiotic relevance.

Synthesis of lipoamino acids via ester–amide exchange under prebiotically plausible wet-dry cycling conditions that results in vesicles at acidic pH.  相似文献   

15.
Systems incorporating catalyst–substrate non-covalent interactions are emerging as a versatile approach to address site-selectivity challenges in remote functionalization reactions. Given the achievements that have been made in this regard using metals such as iridium, manganese and rhodium, it is surprising that non-covalent catalyst direction has not been utilized in reactions incorporating palladium-catalyzed C–H activation steps, despite palladium being arguably the most versatile metal for C–H activation. Herein, we demonstrate that electrostatically directed, site-selective C–Cl oxidative addition is compatible with a subsequent C–H activation step, proceeding via a concerted metalation deprotonation-type mechanism. This results in site-selective cross-coupling of dichloroarenes with fluoroarenes and fluoroheteroarenes, with selectivity controlled by catalyst structure. This study demonstrates that Pd-catalyzed C–H activation can be used productively in combination with a non-covalently-directed mode of catalysis, with important implications in both fields.

Electrostatically-directed oxidative addition is compatible with a subsequent C–H activation step, enabling site-selective coupling of remote chlorides with fluoroarenes and fluoroheteroarenes.  相似文献   

16.
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothly via a novel photoredox-quinuclidine dual catalysis. The in situ formed key β-quinuclidinium radical intermediates, derived from the addition of olefins with quinuclidinium radical cations, are used to enable the MBH reaction of non-electron-deficient olefins. On the basis of previous reports, a plausible mechanism is suggested. Mechanistic studies, such as radical probe experiments and density functional theory (DFT) calculations, were also conducted to support our proposed reaction pathways.

A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.  相似文献   

17.
Anions generally associate more favorably with the air–water interface than cations. In addition to solute size and polarizability, the intrinsic structure of the unperturbed interface has been discussed as an important contributor to this bias. Here we assess quantitatively the role that intrinsic charge asymmetry of water''s surface plays in ion adsorption, using computer simulations to compare model solutes of various size and charge. In doing so, we also evaluate the degree to which linear response theory for solvent polarization is a reasonable approach for comparing the thermodynamics of bulk and interfacial ion solvation. Consistent with previous works on bulk ion solvation, we find that the average electrostatic potential at the center of a neutral, sub-nanometer solute at the air–water interface depends sensitively on its radius, and that this potential changes quite nonlinearly as the solute''s charge is introduced. The nonlinear response closely resembles that of the bulk. As a result, the net nonlinearity of ion adsorption is weaker than in bulk, but still substantial, comparable to the apparent magnitude of macroscopically nonlocal contributions from the undisturbed interface. For the simple-point-charge model of water we study, these results argue distinctly against rationalizing ion adsorption in terms of surface potentials inherent to molecular structure of the liquid''s boundary.

Cations and anions have different affinities for the air-water interface. The intrinsic orientation of surface molecules suggests such an asymmetry, but the bias is dominated by solvent response that is spatially local and significantly nonlinear.

Counter to expectations from conventional theories of solvation, there is a large body of both computational and experimental evidence indicating that small ions can adsorb to the air–water interface.1–9 Implications across the biological, atmospheric and physical sciences have inspired efforts to understand the microscopic driving forces for ions associating with hydrophobic interfaces in general.10–21 A particular emphasis has been placed on understanding ion specificity, i.e., why some ions exhibit strong interfacial affinity while others do not. Empirical trends indicate that ion size and polarizability are important factors, as could be anticipated from conventional theory. More surprisingly, the sign of a solute''s charge can effect a significant bias, with anions tending to adsorb more favorably than cations.Here we examine the microscopic origin of this charge asymmetry in interfacial ion adsorption. We specifically assess whether the thermodynamic preference can be simply and generally understood in terms of long-range biases that are intrinsic to an aqueous system surrounded by vapor. By “long-range” and “nonlocal” we refer to macroscopically large scales, i.e., collective forces that are felt at arbitrarily long distance. Such a macroscopically long-range bias is expected from the air–water interface due to its average polarization, and by some measures the bias is quite strong. By contrast, “local” contributions comprise the entire influence of a solute''s microscopic environment, including electrostatic forces from molecules that are many solvation shells away – any influence that decays over a sub-macroscopic length scale.The importance of macroscopically nonlocal contributions has been discussed extensively in the context of ion solvation in bulk liquid water, which we review in Section 1 as a backdrop for interfacial solvation. The notion that such contributions strongly influence charge asymmetry of solvation at the air–water interface has informed theoretical approaches and inspired criticism of widely used force fields for molecular simulation.22,23 A full understanding of their role in interfacial adsorption, however, is lacking.In the course of this study, we will also evaluate the suitability of dielectric continuum theory (DCT) to describe the adsorption process. DCT has provided an essential conceptual framework for rationalizing water''s response to electrostatic perturbations. But a more precise understanding of its applicability is needed, particularly for the construction of more elaborate models (e.g., with heterogeneous polarizability near interfaces24–26) and for the application of DCT to evermore complex (e.g., nanoconfined27,28) environments.  相似文献   

18.
There is a widespread perception that the high level of endo selectivity witnessed in many Diels–Alder reactions is an intrinsic feature of the transformation. In contrast to expectations based upon this existing belief, the first experimental Diels–Alder reactions of a novel, deuterium-labeled 1,3-butadiene with commonly used mono-substituted alkenic dienophiles (acrolein, methyl vinyl ketone, acrylic acid, methyl acrylate, acrylamide and acrylonitrile) reveal kinetic endo : exo ratios close to 1 : 1. Maleonitrile, butenolide, α-methylene γ-butyrolactone, and N-methylmaleimide behave differently, as does methyl vinyl ketone under Lewis acid catalysis. CBS-QB3 calculations incorporating solvent and temperature parameters give endo : exo product ratios that are in near quantitative agreement with these and earlier experimental findings. This work challenges the preconception of innate endo-selectivity by providing the first experimental evidence that the simplest Diels–Alder reactions are not endo-selective. Trends in behaviour are traced to steric and electronic effects in Diels–Alder transition structures, giving new insights into these fundamental processes.

Cycloadditions of deuterium-labeled 1,3-butadiene with monosubstituted alkenic dienophiles challenge the widespread assumption of endo-selectivity in prototypical Diels–Alder reactions.  相似文献   

19.
A new catalytic method for the direct alkylation of allylic C(sp3)–H bonds from unactivated alkenes via synergistic organo- and photoredox catalysis is described. The transformation achieves an efficient, redox-neutral synthesis of homoallylamines with broad functional group tolerance, under very mild reaction conditions. Mechanistic investigations indicate that the reaction proceeds through the N-centered radical intermediate which is generated by the allylic radical addition to the imine.

A new catalytic method for the direct alkylation of allylic C(sp3)–H bonds from unactivated alkenes via synergistic organo- and photoredox catalysis is described.  相似文献   

20.
Transition-metal-catalyzed cross-electrophile C(sp2)–(sp3) coupling and C–H alkylation reactions represent two efficient methods for the incorporation of an alkyl group into aromatic rings. Herein, we report a Pd-catalyzed cascade cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides. Methoxy and benzyloxy groups, which are ubiquitous functional groups and common protecting groups, were utilized as crucial mediators via primary or secondary C(sp3)–H activation. The reaction provides an innovative and convenient access for the synthesis of alkylated phenol derivatives, which are widely found in bioactive compounds and organic functional materials.

A cascade Pd-catalyzed cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides has been developed by using an ortho-methoxy or benzyloxy group as a mediator via C(sp3)–H activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号