首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ARV-110, a novel proteolysis-targeting chimera (PROTAC), has been reported to show satisfactory safety and tolerability for prostate cancer therapy in phase I clinical trials. However, there is a lack of bioanalytical assays for ARV-110 determination in biological samples. In this study, we developed and validated an LC-MS/MS method for the quantitation of ARV-110 in rat and mouse plasma and applied it to pharmacokinetic studies. ARV-110 and pomalidomide (internal standard) were extracted from the plasma samples using the protein precipitation method. Sample separation was performed using a C18 column and a mobile phase of 0.1% formic acid in distilled water–0.1% formic acid in acetonitrile (30:70, v/v). Multiple reaction monitoring was used to quantify ARV-110 and pomalidomide with ion transitions at m/z 813.4 → 452.2 and 273.8 → 201.0, respectively. The developed method showed good linearity in the concentration range of 2–3000 ng/mL with acceptable accuracy, precision, matrix effect, process efficiency, and recovery. ARV-110 was stable in rat and mouse plasma under long-term storage, three freeze-thaw cycles, and in an autosampler, but unstable at room temperature and 37 °C. Furthermore, the elimination of ARV-110 via phase 1 metabolism in rat, mouse, and human hepatic microsomes was shown to be unlikely. Application of the developed method to pharmacokinetic studies revealed that the oral bioavailability of ARV-110 in rats and mice was moderate (23.83% and 37.89%, respectively). These pharmacokinetic findings are beneficial for future preclinical and clinical studies of ARV-110 and/or other PROTACs.  相似文献   

2.
A novel, fast and sensitive enantioselective HPLC assay with a new core–shell isopropyl carbamate cyclofructan 6 (superficially porous particle, SPP) chiral column (LarihcShell-P, LSP) was developed and validated for the enantiomeric separation and quantification of verapamil (VER) in rat plasma. The polar organic mobile phase composed of acetonitrile/methanol/trifluoroacetic acid/triethylamine (98:2:0.05: 0.025, v/v/v/v) and a flow rate of 0.5 mL/min was applied. Fluorescence detection set at excitation/emission wavelengths 280/313 nm was used and the whole analysis process was within 3.5 min, which is 10-fold lower than the previous reported HPLC methods in the literature. Propranolol was selected as the internal standard. The S-(−)- and R-(+)-VER enantiomers with the IS were extracted from rat plasma by utilizing Waters Oasis HLB C18 solid phase extraction cartridges without interference from endogenous compounds. The developed assay was validated following the US-FDA guidelines over the concentration range of 1–450 ng/mL (r2 ≥ 0.997) for each enantiomer (plasma) and the lower limit of quantification was 1 ng/mL for both isomers. The intra- and inter-day precisions were not more than 11.6% and the recoveries of S-(−)- and R-(+)-VER at all quality control levels ranged from 92.3% to 98.2%. The developed approach was successfully applied to the stereoselective pharmacokinetic study of VER enantiomers after oral administration of 10 mg/kg racemic VER to Wistar rats. It was found that S-(−)-VER established higher Cmax and area under the concentration-time curve (AUC) values than the R-(+)-enantiomer. The newly developed approach is the first chiral HPLC for the enantiomeric separation and quantification of verapamil utilizing a core–shell isopropyl carbamate cyclofructan 6 chiral column in rat plasma within 3.5 min after solid phase extraction (SPE).  相似文献   

3.
The purpose of this study was to develop and validate a simple and sensitive liquid chromatography tandem mass spectrometry method for the determination of ulixertinib in rat plasma. The plasma samples were precipitated with acetonitrile and then separated on a C18 column with water containing 0.1% formic acid and acetonitrile as mobile phase at a flow rate of 0.3 mL/min. Analytes were monitored on a TSQ Vantage triple quadrupole tandem mass spectrometer operated in positive electrospray ionization mode. Selected reaction monitoring transitions were m/z 433.1→262.1 for ulixertinib and m/z 450.1→260.1 for internal standard. The assay achieved good linearity over the concentration range of 0.1‐1000 ng/mL with correlation coefficient > 0.9991. The validated assay has been successfully applied to pharmacokinetic study of ulixertinib in rat after oral and intravenous administration. The results revealed that ulixertinib showed high exposure in rat plasma, low clearance, moderate oral bioavailability (45.13%), and dose‐independent pharmacokinetic profiles over the oral dose range of 1‐15 mg/kg. In addition, six metabolites from rat plasma and hepatocytes were detected and structurally identified by ultra‐high performance liquid chromatography combined with high‐resolution mass spectrometry. The metabolic pathways of ulixertinib referred to hydroxylation and dealkylation and glucuronidation.  相似文献   

4.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Fostamatinib is a prodrug of the active metabolite tamatinib, which is a spleen tyrosine kinase (Syk) inhibitor used in the treatment of primary chronic adult immune thrombocytopenia and rheumatoid arthritis. A highly sensitive, rapid, reliable, and green method was developed and validated using ultra-performance liquid chromatography and tandem mass spectrometry (UPLC–MS/MS) for quantification of tamatinib in rat plasma. Ibrutinib was used as internal standard and liquid–liquid extraction was applied using tert-butyl methyl ether. The analyte was separated on an AcquityTM CSH C18 (2.1 mm × 100 mm, 1.7 µm) column using mobile phase consisting of 10 mM ammonium acetate and acetonitrile (10:90) and the flow rate was 0.25 mL/min. Electrospray ionization (ESI) was carried out in positive mode. Quantitation of tamatinib and the IS was performed using multiple reaction monitoring mode with precursor-to-product transitions of m/z 471.1 > 122.0 and m/z 441.1 > 84.0, respectively. The calibration range was 0.1–1000.0 ng/mL and the linearity of the method was ≥0.997. The developed method greenness was investigated. All principal parameters for the method, including linearity, accuracy, precision, recovery, and stability, were within acceptable ranges. Tamatinib pharmacokinetic study in rats was successfully carried out using the developed method.  相似文献   

6.
Glutathione (GSH) is a powerful antioxidant, but its application is limited due to poor storage stability and low bioavailability. A novel nutrient encapsulation and delivery system, consisting of polymerized whey protein concentrate and GSH, was prepared and in vivo bioavailability, antioxidant capacity and toxicity were evaluated. Polymerized whey protein concentrate encapsulated GSH (PWPC-GSH) showed a diameter of roughly 1115 ± 7.07 nm (D50) and zeta potential of 30.37 ± 0.75 mV. Differential scanning calorimetry (DSC) confirmed that GSH was successfully dispersed in PWPC particles. In vivo pharmacokinetics study suggested that PWPC-GSH displayed 2.5-times and 2.6-fold enhancement in maximum concentration (Cmax) and area under the concentration–time curve (AUC) as compared to free GSH. Additionally, compared with plasma of mice gavage with free GSH, significantly increased antioxidant capacity of plasma in mice with PWPC-GSH was observed (p < 0.05). Sub-chronic toxicity evaluation indicated that no adverse toxicological reactions related to oral administration of PWPC-GSH were observed on male and female rats with a diet containing PWPC-GSH up to 4% (w/w). Data indicated that PWPC may be an effective carrier for GSH to improve bioavailability and antioxidant capacity.  相似文献   

7.
A simple, rapid and sensitive LC‐MS/MS method was developed and validated for the determination of free quercetin in rat plasma, using fisetin as internal standard. The detection was performed by negative ion electrospray ionization under selected reaction monitoring. Chromatographic separation (isocratic elution) was carried out using acetonitrile–10 m m ammonium formate (80:20, v/v) with 0.1% v/v formic acid. The lower limit of quantification (4.928 ng/mL) provided high sensitivity for the detection of quercetin in rat plasma. The linearity range was from 5 to 2000 ng/mL. Intra‐ and inter‐day variability (RSD) of quercetin extraction from rat plasma was <4.19 and 1.37% with accuracies of 98.77 and 99.67%. The method developed was successfully applied for estimating free quercetin in rat plasma, after oral administration of quercetin‐loaded biodegradable nanoparticles (QLN) and quercetin suspension. QLN (Cmax, 1277.34 ± 216.67 ng/mL; AUC, 17,458.25 ± 3152.95 ng hr/mL) showed a 5.38‐fold increase in relative bioavailability as compared with quercetin suspension (Cmax, 369.2 ± 108.07 ng/mL; AUC, 3276.92 ± 396.67 ng hr/mL). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Houttuynia essential oil (HEO) has excellent antiviral, anti-inflammatory, and other pharmacological effects, but the lack of effective analytical methods to quantify HEO in plasma has hindered its better clinical monitoring. Houttuynine (Hou) is one of the main active ingredients and quality control substances of HEO, so the pharmacokinetic study of HEO could be conducted by determining Hou blood concentration. Hou is active and not stable in plasma, which makes its blood concentration difficult to measure. In this work, a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method for Hou determination in rat blood was established that involves Hou being derivatized with 2, 4-dinitrophenylhydrazine to form a stable compound to prevent degradation. Herein, p-Tolualdehyde-2,4-dinitrophenylphenylhydrazone was selected as an internal standard substance and the LC-MS/MS method was evaluated for selectivity, precision, accuracy, calibration limit, matrix effect, recovery, and stability. Good linearity (r2 = 0.998) was reached in the range of 2–2000 ng/mL, and the lower limit of quantification of Hou was determined to be 2 ng/mL. The mean intra-assay accuracy ranged from 77.7% to 115.6%, whereas the intra-assay precision (relative standard deviation, RSD) was below 11.42%. The matrix effect value for Hou in rat plasma was greater than 75%, and for the internal standard (IS) it was 104.56% ± 3.62%. The extraction recovery of Hou were no less than 90%, and for the IS it was 96.50% ± 4.68%. Our method is sensitive and reliable and has been successfully applied to the pharmacokinetic analysis of Hou in rats given HEO via gavage and injection.  相似文献   

10.
A simple HPLC‐UV method was developed and validated for the quantification of pterostilbene (3,5‐dimethoxy‐4'‐hydroxy‐trans‐stilbene), a pharmacologically active phytoalexin in rat plasma. The assay was carried out by measuring the UV absorbance at 320 nm. Pterostilbene and the internal standard, 3,5,4'‐trimethoxy‐trans‐stilbene eluted at 5.7 and 9.2 min, respectively. The calibration curve (20–2000 ng/mL) was linear (R2 > 0.997). The lower limits of detection and of quantification were 6.7 and 20 ng/mL, respectively. The intra‐ and inter‐day precisions in terms of RSD were all lower than 6%. The analytical recovery ranged from 95.5 ± 3.7 to 103.2 ± 0.7% while the absolute recovery ranged from 101.9 ± 1.1 to 104.9 ± 4.4%. This simple HPLC method was subsequently applied in a pharmacokinetic study carried out in Sprague–Dawley rats. The terminal elimination half‐life and clearance of pterostilbene were 96.6 ± 23.7 min and 37.0 ± 2.5 mL/min/kg, respectively, while its absolute oral bioavailability was 12.5 ± 4.7%. Pterostilbene appeared to have better pharmacokinetic characteristics than its natural occurring analog, resveratrol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL (r = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.  相似文献   

12.
Ginsenoside Rk1 (Rk1) exhibited various potent biological activities. However, its pharmacokinetic profile in vivo remains unclear. In the present study, a simple and sensitive liquid chromatography tandem mass spectrometry method was developed and validated for determination of Rk1 in rat plasma and applied in a pharmacokinetic study. The sample was precipitated with acetonitrile and separated on a Zorbax Eclipse XDB C18 column (50 × 2.1 mm, 1.8 μm). The mobile phase was composed of 0.1% formic acid in water and acetonitrile at a flow rate of 0.4 mL/min. Rk1 and internal standard (ginsenoside Rg3) were quantitatively monitored with precursor‐to‐product ion transitions of m/z 765.4 → 441.5 and m/z 783.5 → 621.4, respectively. The assay was linear over the concentration range of 5–1000 ng/mL (r > 0.99) with the LLOQ of 5 ng/mL. Other parameters including intra‐ and inter‐day precision and accuracy, extraction recovery and matrix effect were within the acceptable limits. The analyte was stable under the tested storage conditions. The validated method has been successfully applied to a pharmacokinetic study of Rk1 in rat plasma after intravenous (5 mg/kg) and oral (25 mg/kg, 50 mg/kg) administration. After oral administration, Rk1 could be detected in blood at 30 min and reached the highest concentration at 4.29~4.57 h. Our results demonstrated that Rk1 showed low clearance, moderate half‐life (3.09–3.40 h) and low bioavailability (2.87–4.23%). The study will provide information for the further application of Rk1.  相似文献   

13.
A sensitive and accurate liquid chromatography coupled with mass spectrometry (LC‐MS) method was developed for the determination of agrimol B, a main active ingredient isolated from Agrimonia pilosa Ledeb., in rat plasma. Chromatographic separation was achieved on a Zorbax CN column (150 × 4.6 mm, 5 µm), with isocratic elution consisting of acetonitrile and water (15:85, v/v) at a flow rate of 0.6 mL/min. Agrimol B and dryocrassin ABBA, an internal standard (IS), were analyzed by selected ion monitoring at m/z transitions of 681.3 and 819.4, respectively. This assay exhibited a good linearity with a correlation coefficient >0.99 and showed no endogenous interference with the analyte and IS. The limit of quantification of agrimol B was 8.025 ng/mL with acceptable precision and accuracy. The method was successfully applied in the pharmacokinetic study of agrimol B in rats after intravenous (1 mg/kg) and oral (2, 5 and 10 mg/kg) doses of agrimol B. The absolute bioavailability of agrimol B was 16.4–18.0% in rat. Our study clarifies the pharmacokinetic behavior of agrimol B in animals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive and cost-effective HPLC-UV bioanalytical method for determination of lopinavir (LPV) in rat and human plasma was developed and validated. The plasma sample preparation procedure includes a combination of protein precipitation using cold acetonitrile and liquid–liquid extraction with n-hexane–ethyl acetate (7:3, v/v). A good chromatographic separation was achieved with a Phenomenex Gemini column (C18, 150 mm × 2.0 mm, 5 μm) at 40°C with gradient elution, at 211 nm. Calibration curves were linear in the range 10–10,000 ng/mL, with a lower limit of quantification of 10 ng/mL using 100 μL of plasma. The accuracy and precision in all validation experiments were within the criteria range set by the guidelines of the Food and Drug Administration. This method was successfully applied to a preliminary pharmacokinetic study in rats following an intravenous bolus administration of LPV. Moreover, the method was subsequently fully validated for human plasma, allowing its use in therapeutic drug monitoring (TDM). In conclusion, this novel, simple and cost-efficient bioanalytical method for determination of LPV is useful for pharmacokinetic and drug delivery studies in rats, as well as TDM in human patients.  相似文献   

15.
A simple HPLC method has been developed for determination of sinomenine in dog plasma and has been used to evaluate the pharmacokinetics of sinomenine tablets in dogs. Chromatographic separation was performed on a reversed-phase column with 0.78% (w/v) NaH2PO4-acetonitrile, 88:12 (v/v), as mobile phase, delivered at a flow rate of 1.5 mL min?1. Detection was performed at 265 nm. The limit of quantification was 5.0 ng mL?1. The calibration range was from 5.0 to 1000 ng mL?1. The developed method was applied to pharmacokinetic studies of sinomenine sustained-release tablets (test preparation) and sinomenine conventional tablets (reference preparation) in six dogs. Pharmacokinetic data t max, C max, AUC 0-t , AUC 0-∞, and t 1/2 for both preparations were determined from plasma concentration-time profiles. The method was sufficiently sensitive, simple, and repeatable for use in pharmacokinetic studies.  相似文献   

16.
《Analytical letters》2012,45(13):2017-2028
Snake venom contains bioactive materials for drug development, diagnosis, and treatment. After separating and purifying the kallikrein-like enzyme (AHP-Ka) from Agkistrodon halys pallas venom for the first time, a monoclonal antibody against AHP-Ka was prepared and characterized. An indirect sandwich enzyme-linked immunosorbent assay (ELISA) based on the monoclonal antibody was developed and validated for the pharmacokinetic analysis of AHP-Ka in rat plasma. The method was calibrated using rat plasma and 1:100 dilution of plasma was selected to prepare a calibration curve to validate the precision, accuracy, and stability of the ELISA method. A good linear relationship was obtained in a working range from 3.9 ng/mL to 62.5 ng/mL with a limit of detection of 2.94 ng/mL. Intra- and inter-batch precision were less than 10%. The average recovery ranged from 94.6% to 104.4% in rat plasma at the concentrations of 5 ng/mL, 15 ng/mL, and 45 ng/mL, respectively. The ELISA method was successfully used for the pharmacokinetic study of AHP-Ka in Sprague-Dawley rat plasma after intravenous administration. The work is expected to contribute to future preclinical development of AHP-Ka.  相似文献   

17.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) was developed and validated for simultaneous quantification of oleanolic acid and hederagenin in rat plasma. After the two analytes were extracted with liquid–liquid extraction, chromatographic separation was performed on a C18 column with acetonitrile and water (85:15, v /v) as mobile phase at a flow rate of 0.4 mL/min. Calibration curves exhibited good linearity (r > 0.995) over the ranges of 0.41–82.0 ng/mL for oleanolic acid and 0.32–64.0 ng/mL for hederagenin, respectively. The lower limit of quantifications (LLOQs) in plasma were 0.41 ng/mL for oleanolic acid and 0.32 ng/mL for hederagenin. The established LLOQs were within the concentration needed for the assay in plasma, which met the requirements to evaluate their pharmacokinetics of oleanolic acid and hederagenin. This developed assay was successfully applied in the pharmacokinetic study of oleanolic acid and hederagenin in rats after oral administration of Rhizoma Clematidis extract.  相似文献   

18.
The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS-block-poly(ε-caprolactone) (TPGS-b-PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS-b-PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1–5 kDa), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. Assembly of block copolymers was achieved via the cosolvent evaporation method. The self-assembled structures were characterized for their size, polydispersity, and CMC using dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Only copolymers that consisted of TPGS with PEG molecular weights ≥ 2000 Da were able to self-assemble and form nanocarriers of ≤200 nm in diameter. Moreover, TPGS2000-b-PCL4000, TPGS3500-b-PCL7000, and TPGS5000-b-PCL15000 micelles enhanced the aqueous solubility of PAX from 0.3 µg/mL up to 88.4 ug/mL in TPGS5000-b-PCL15000. Of the abovementioned micellar formulations, TPGS5000-b-PCL15000 showed the slowest in vitro release of PAX. Specifically, the PAX-loaded TPGS5000-b-PCL15000 micellar formulation showed less than 10% drug release within the first 12 h, and around 36% cumulative drug release within 72 h compared to 61% and 100% PAX release, respectively, from the commercially available formulation (Ebetaxel®) at the same time points. Our results point to a great potential for TPGS-b-PCL micelles to efficiently solubilize and control the release of PAX.  相似文献   

19.
PSTi8 is a pancreastatin inhibitory peptide that is effective in the treatment of diabetic models. This study investigates the pharmacokinetic (PK) properties of PSTi8 in Sprague Dawley rats, for the first time. In vitro and in vivo PK studies were performed to evaluate the solubility, stability in plasma and liver microsomes, plasma protein binding, blood–plasma partitioning, bioavailability, dose proportionality, and gender difference in PK. Samples were analyzed using the validated LC-MS/MS method. The solubility of PSTi8 was found to be 9.30 and 25.75 mg/mL in simulated gastric and intestinal fluids, respectively. The protein binding of PSTi8 was estimated as >69% in rat plasma. PSTi8 showed high stability in rat plasma and liver microsomes and the blood–plasma partitioning was >2. The bioavailability of PSTi8 after intraperitoneal and subcutaneous administration was found to be 95.00 ± 12.15 and 78.47 ± 17.72%, respectively, in rats. PSTi8 showed non-linear PK in dose proportionality studies, and has no gender difference in the PK behavior in rats. The high bioavailability of PSTi8 can be due to high water solubility and plasma protein binding, low clearance and volume of distribution. Our in vitro and in vivo findings support the development of PSTi8 as an antidiabetic agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号