首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A unique fluorescent supramolecular assembly was constructed using coumarin-modified β-cyclodextrin as a reversible ratiometric probe and an adamantane-modified cyclic arginine–glycine–aspartate peptide as a cancer-targeting agent via host–guest inclusion complexation. Importantly, the coumarin-modified β-cyclodextrin not only showed higher sensitivity than the parent coumarin derivatives owing to the presence of numerous hydroxyl groups on the cyclodextrin but also provided a hydrophobic cavity for encapsulation of a cancer-targeting agent. The assembly showed a reversible and fast response to biothiols with a micromolar dissociation constant, as well as outstanding cancer cell permeability, which can be used for high-efficiency real-time monitoring of biothiols in cancer cells. This supramolecular assembly strategy endows the fluorescent probe with superior performance for dynamic sensing of biothiols.

A unique fluorescent supramolecular assembly was constructed from coumarin-modified β-cyclodextrin and an adamantane-modified cyclic arginine–glycine–aspartate peptide for high-efficiency real-time monitoring of biothiols in cancer cells.  相似文献   

2.
Cyclodextrins are widely used cyclic oligosaccharides of d-glucose whose hydrophilic exterior is covered by hydroxyl groups and whose hydrophobic interior is surrounded by lipophilic moieties. Because of this structural feature, cyclodextrin molecules commonly aggregate into dimensional structures via intermolecular hydrogen bonds, and their aggregation into closed oligomeric architectures has been achieved only via the attachment of functional substituent groups to the cyclodextrin rings. Here, we report the first structurally characterized self-assembly of non-substituted γ-cyclodextrin molecules into cyclic hexamers, which was realized in a chiral coordination framework composed of complex-anions with d-penicillamine rather than l- or dl-penicillamine. The self-assembly is accompanied by the 3D-to-2D structural transformation of porous coordination frameworks to form helical hexagonal cavities that accommodate helical γ-cyclodextrin hexamers. This finding provides new insight into the development of cyclodextrin chemistry and host–guest chemistry based on chiral recognition and crystal engineering processes.

The complex anions with d-penicillamine are organized into a 3D porous framework that allows the inclusion of γ-CD. The inclusion is accompanied by the 3D-to-2D transformation of porous frameworks so as to accept cyclic hexamers of γ-CD.  相似文献   

3.
Organic host–guest doped materials exhibiting the room temperature phosphorescence (RTP) phenomenon have attracted considerable attention. However, it is still challenging to investigate their corresponding luminescence mechanism, because for host–guest systems, it is very difficult to obtain single crystals compared to single-component or co-crystal component materials. Herein, we developed a series of organic doped materials with triphenylamine (TPA) as the host and TPA derivatives with different electron-donating groups as guests. The doped materials showed strong fluorescence, thermally activated delayed fluorescence (τ: 39–47 ms), and efficient room temperature phosphorescence (Φphos: 7.3–9.1%; τ: 170–262 ms). The intensity ratio between the delayed fluorescence and phosphorescence was tuned by the guest species and concentration. Molecular dynamics simulations were used to simulate the molecular conformation of guest molecules in the host matrix and the interaction between the host and guest molecules. Therefore, the photophysical properties were calculated using the QM/MM model. This work provides a new concept for the study of molecular packing of guest molecules in the host matrix.

Molecular dynamics simulations were used to simulate the molecular conformation and interaction between hosts and guests. This work provides a new concept for the study of molecular packing for the investigation of the luminescence mechanism.  相似文献   

4.
Protocatechuic aldehyde (PCAL) and protocatechuic acid (PCAC) are catechol derivatives and have broad therapeutic effects associated with their antiradical activity. Their pharmacological and physicochemical properties have been improved via the cyclodextrin (CD) encapsulation. Because the characteristics of β-CD inclusion complexes with PCAL (1) and PCAC (2) are still equivocal, we get to the bottom of the inclusion complexation by an integrated study of single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that PCAL and PCAC are nearly totally shielded in the β-CD wall. Their aromatic rings are vertically aligned in the β-CD cavity such that the functional groups on the opposite side of the ring (3,4-di(OH) and 1-CHO/1-COOH groups) are placed nearby the O6–H and O2–H/O3–H rims, respectively. The preferred inclusion modes in 1 and 2 help to establish crystal contacts of OH⋅⋅⋅O H-bonds with the adjacent β-CD OH groups and water molecules. By contrast, the DFT-optimized structures of both complexes in the gas phase are thermodynamically stable via the four newly formed host–guest OH⋯O H-bonds. The intermolecular OH⋅⋅⋅O H-bonds between PCAL/PCAC 3,4-di(OH) and β-CD O6–H groups, and the shielding of OH groups in the β-CD wall help to stabilize these antioxidants in the β-CD cavity, as observed in our earlier studies. Moreover, PCAL and PCAC in distinct lattice environments are compared for insights into their structural flexibility.  相似文献   

5.
Efavirenz is an antiretroviral drug of widespread use in the management of infections with human immunodeficiency virus type 1 (HIV-1). Efavirenz is also used in paediatrics, but due to its very poor aqueous solubility the liquid formulations available resort to oil-based excipients. In this report we describe the interaction of γ-cyclodextrin with efavirenz in solution and in the solid state. In aqueous solution, the preferential host–guest stoichiometry was determined by the continuous variation method using 1H NMR, which indicated a 3:2 host-to-guest proportion. Following, the solid inclusion compound was prepared at different stoichiometries by co-dissolution and freeze-drying. Solid-state characterisation of the products using FT-IR, 13C{1H} CP-MAS NMR, thermogravimetry, and X-ray powder diffraction has confirmed that the 3:2 stoichiometry is the adequate starting condition to isolate a solid inclusion compound in the pure form. The effect of γ-cyclodextrin on the solubility of efavirenz is studied by the isotherm method.  相似文献   

6.
Understanding the host–guest chemistry of α-/β-/γ- cyclodextrins (CDs) and a wide range of organic species are fundamentally attractive, and are finding broad contemporary applications toward developing efficient drug delivery systems. With the widely used β-CD as the host, we herein demonstrate that its inclusion behaviors toward an array of six simple and bio-conjugatable adamantane derivatives, namely, 1-adamantanol (adm-1-OH), 2-adamantanol (adm-2-OH), adamantan-1-amine (adm-1-NH2), 1-adamantanecarboxylic acid (adm-1-COOH), 1,3-adamantanedicarboxylic acid (adm-1,3-diCOOH), and 2-[3-(carboxymethyl)-1-adamantyl]acetic acid (adm-1,3-diCH2COOH), offer inclusion adducts with diverse adamantane-to-CD ratios and spatial guest locations. In all six cases, β-CD crystallizes as a pair supported by face-to-face hydrogen bonding between hydroxyl groups on C2 and C3 and their adjacent equivalents, giving rise to a truncated-cone-shaped cavity to accommodate one, two, or three adamantane derivatives. These inclusion complexes can be terminated as (adm-1-OH)2⊂CD2 (1, 2:2), (adm-2-OH)3⊂CD2 (2, 3:2), (adm-1-NH2)3⊂CD2 (3, 3:2), (adm-1-COOH)2⊂CD2 (4, 2:2), (adm-1,3-diCOOH)⊂CD2 (5, 1:2), and (adm-1,3-diCH2COOH)⊂CD2 (6, 1:2). This work may shed light on the design of nanomedicine with hierarchical structures, mediated by delicate cyclodextrin-based hosts and adamantane-appended drugs as the guests.  相似文献   

7.
Stable encapsulation of medically active compounds can lead to longer storage life and facilitate the slow-release mechanism. In this work, the dynamic and molecular interactions between plumbagin molecule with β-cyclodextrin (BCD) and its two derivatives, which are dimethyl-β-cyclodextrin (MBCD), and 2-O-monohydroxypropyl-β-cyclodextrin (HPBCD) were investigated. Molecular dynamics simulations (MD) with GLYCAM-06 and AMBER force fields were used to simulate the inclusion complex systems under storage temperature (4 °C) in an aqueous solution. The simulation results suggested that HPBCD is the best encapsulation agent to produce stable host–guest binding with plumbagin. Moreover, the observation of the plumbagin dynamic inside the binding cavity revealed that it tends to orient the methyl group toward the wider rim of HPBCD. Therefore, HPBCD is a decent candidate for the preservation of plumbagin with a promising longer storage life and presents the opportunity to facilitate the slow-release mechanism.  相似文献   

8.
A hydrogen-bonded (H-bonded) amide macrocycle was found to serve as an effective component in the host–guest assembly for a supramolecular chirality transfer process. Circular dichroism (CD) spectroscopy studies showed that the near-planar macrocycle could produce a CD response when combined with three of the twelve L-α-amino acid esters (all cryptochiral molecules) tested as possible guests. The host–guest complexation between the macrocycle and cationic guests was explored using NMR, revealing the presence of a strong affinity involving the multi-point recognition of guests. This was further corroborated by density functional theory (DFT) calculations. The present work proposes a new strategy for amplifying the CD signals of cryptochiral molecules by means of H-bonded macrocycle-based host–guest association, and is expected to be useful in designing supramolecular chiroptical sensing materials.  相似文献   

9.
The alkaloid colchicine forms, in addition to the previously known dihydrate host–guest complex, a monohydrate complex. The crystal structure of the monohydrate was determined by direct methods and refined to a final R value of 0.046 for 1425 observed reflections. Crystal data are: orthorhombic, space group P2 12 12 1, a = 9.145(2) Å; b = 13.270(3) Å; c = 17.942(4) Å, V = 2177(1) Å3, Z= 4, Dx = 1.22 g cm-3, T = 293 K. The conformation of the molecule is practically identical with the conformation in the dihydrate inclusion complex. Water molecules show proton donor as well as proton acceptor properties and are hydrogen bonded with the three colchicine molecules giving rise to the three dimensional H-bonded network.  相似文献   

10.
The crystal structure of the inclusion compound formed between (11S,12S)-(-)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid, (1), and n-hexane (2:1) has been studied by X-ray diffraction. It crystallizes in the tetragonal space group P41 and represents a less common type of inclusion compound, which has helical and chiral structural elements. Helical chains, formed by hydrogen-bonded host molecules, wind around the 21 screw axes and encircle the guest molecules. Crystal data: a=b=17.478(1); c=12.021(1)Å, Z=4 host–guest 2:1 units, R=0.043, Rw=0.061 for 2225 observations with I > 3 (I). The general shape and conformational flexibility of 1 with respect to the requirements of inclusion formation and crystal packing are discussed.  相似文献   

11.
A binary reversible switch between low-temperature multi-step spin crossover (SCO), through the evolution of the population γHS(T) with high-spin (HS)-low-spin (LS) sequence: HS1LS0 (state 1) ↔ HS2/3LS1/3 (state 2) ↔ HS1/2LS1/2 (state 3) ↔ HS1/3LS2/3 (state 4) ↔ HS0LS1 (state 5), and complete one step hysteretic spin transition featuring 20 K wide thermal hysteresis centred at 290 K occurs in the three-dimensional (3D) Hofmann-type porous coordination polymer {FeII(3,8phen)[Au(CN)2]2xPhNO2 (3,8phen = 3,8-phenanthroline, PhNO2 = nitrobenzene), made up of two identical interpenetrated pcu-type frameworks. The included PhNO2 guest (x = 1, 1·PhNO2) acts as a molecular wedge between the interpenetrated 3D frameworks via PhNO2-3,8phen intermolecular recognition and is the source of the strong elastic frustration responsible for the multi-step regime. Detailed X-ray single crystal analysis reflects competition between spatial periodicities of structurally inequivalent HS and LS SCO centres featuring: (i) symmetry breaking (state 3) with ⋯HS–LS⋯ ordering with γHS = 1/2; and (ii) occurrence of spatial modulation of the structure providing evidence for stabilization of local or aperiodic ordered mixed spin states for states 2 and 4 (with γHS ≈ 2/3) and 4 (with γHS ≈ 1/3), respectively. Below c.a. 20 K, structural and magnetic analyses show the photogeneration of a metastable HS*, state 6. The room-temperature single-step hysteretic regime appears with release of the guest (x = 0, 1) and the elastic frustration, and reversibly switches back to the original four-step behaviour upon guest re-adsorption. Both uncommon relevant SCO events meeting in the same material represent a rare opportunity to compare them in the frame of antiferro- and ferro-elastic transitions.

Reversible switch between a robust bistable two-state room temperature spin crossover (SCO) and its transformation in a four-stepped elastically frustrated SCO due to guest inclusion in a metal–organic Hofmann framework.  相似文献   

12.
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N′-dioxide–Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.

Catalytic asymmetric tandem carbonyl ylide formation/[4 + 3]-cycloaddition of β,γ-unsaturated α-ketoesters, aldehydes and α-diazoacetates was achieved by using a bimetallic rhodium(ii)/chiral N,N′-dioxide–Sm(iii) complex catalyst.  相似文献   

13.
Cytosine methylation and hydroxymethylation are both important epigenetic modifications of DNA in mammalian cells. Therefore, profiling DNA (hydroxy)methylation across the genome is vital for understanding their roles in gene regulation. Here, we report a nanopore-based approach for quick and reliable detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA at the single-molecule level. The single-stranded DNA containing 5-methylcytosine or 5-hydroxymethylcytosine was first selectively modified on the epigenetic base to attach a host–guest complex. Threading of the modified DNA molecules through α-hemolysin nanopores causes unbinding of the host–guest complex and generates highly characteristic current signatures. Statistical analysis of the signature events affords quantitative information about 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Our results suggest that other DNA modifications could also be detected with the developed method. Furthermore, we anticipate our nanopore sensing strategy to be generally useful in biochemical analysis and to find applications in the early diagnosis of diseases.  相似文献   

14.
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N–H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N–Ag–N bonds at 423 K, by virtue of the unconventional metal–acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host–guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.

A hydrogen-bonded network on a Ag(111) surface can transform into an isostructural Ag(i) coordination network, giving drastically different host–guest recognition behaviours.  相似文献   

15.
The host–guest doping system has aroused great attention due to its promising advantage in stimulating bright and persistent room-temperature phosphorescence (RTP). Currently, exploration of the explicit structure–property relationship of bicomponent systems has encountered obstacles. In this work, two sets of heterocyclic isomers showing promising RTP emissions in the solid state were designed and synthesized. By encapsulating these phosphors into a robust phosphorus-containing host, several host–guest cocrystalline systems were further developed, achieving highly efficient RTP performance with a phosphorescence quantum efficiency (ϕP) of ∼26% and lifetime (τP) of ∼32 ms. Detailed photophysical characterization and molecular dynamics (MD) simulation were conducted to reveal the structure–property relationships in such bicomponent systems. It was verified that other than restricting the molecular configuration, the host matrix could also dilute the guest to avoid concentration quenching and provide an external heavy atom effect for the population of triplet excitons, thus boosting the RTP performance of the guest.

Several host–guest cocrystal systems with bright and persistent room-temperature phosphorescence were developed by utilizing a phosphorus-containing material as a robust host and newly developed isomeric organic phosphors as guests.  相似文献   

16.
The complexation of metal cations into a host–guest situation is particularly well exemplified by [2.2.2]paracyclophane and AgI, which leads to a strong cation–π interaction with a specific face of the host molecule. Through this study we sought a deeper understanding of the effects the metal center has on the NMR spectroscopic properties of the prototypical organic host, generating theoretical reasons for the observed experimental results with an aim to determine the role of the cation–π interaction in a host–guest scenario. From an analysis of certain components of the induced magnetic field and the 13C NMR shielding tensor under its own principal axis system (PAS), the local and overall magnetic behavior can be clearly described. Interestingly, the magnetic response of such a complex exhibits a large axis-dependent behavior, which leads to an overall shielding effect for the coordinating carbon atoms and a deshielding effect for the respective uncoordinated counterparts, evidence that complements previous experimental results. This proposed approach can be useful to gain further insight into the local and overall variation of NMR shifts for host–guest pairs involving both inorganic and organic hosts.  相似文献   

17.
We present herein an innovative host–guest method to achieve induced molecular chirality from an achiral stilbazolium dye (DSM). The host–guest system is exquisitely designed by encapsulating the dye molecule in the molecule-sized chiral channel of homochiral lanthanide metal–organic frameworks (P-(+)/M-(−)-TbBTC), in which the P- or M-configuration of the dye is unidirectionally generated via a spatial confinement effect of the MOF and solidified by the dangling water molecules in the channel. Induced chirality of DSM is characterized by solid-state circularly polarized luminescence (CPL) and micro-area polarized emission of DSM@TbTBC, both excited with 514 nm light. A luminescence dissymmetry factor of 10−3 is obtained and the photoluminescence quantum yield (PLQY) of the encapsulated DSM in DSM@TbTBC is ∼10%, which is close to the PLQY value of DSM in dilute dichloromethane. Color-tuning from green to red is achieved, owing to efficient energy transfer (up to 56%) from Ln3+ to the dye. Therefore, this study for the first time exhibits an elegant host–guest system that shows induced strong CPL emission and enables efficient energy transfer from the host chiral Ln-MOF to the achiral guest DSM with the emission color tuned from green to red.

Homochiral Ln-MOFs are synthesized to encapsulate achiral dyes to induce strong circularly polarized luminescence with a luminescence dissymmetry factor of 10−3.  相似文献   

18.
Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the transcis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t-Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state transcis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t-Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha''s rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels.

Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex.  相似文献   

19.
Gold nanoclusters (AuNCs) with well-defined atomically precise structures present promising emissive prospects for excellent biocompatibility and optical properties. However, the relatively low luminescence efficiency in solutions for most AuNCs is still a perplexing issue to be resolved. In this study, a facile supramolecular strategy was developed to rigidify the surface of FGGC-AuNCs by modifying transition rates in excited states via host–guest self-assembly between cucurbiturils (CBs) and FGGC (Phe–Gly–Gly–Cys peptide). In aqueous solutions, CB/FGGC-AuNCs presented an extremely enhanced red phosphorescence emission with a quantum yield (QY) of 51% for CB[7] and 39% for CB[8], while simple FGGC-AuNCs only showed a weak emission with a QY of 7.5%. Furthermore, CB[7]/FGGC-AuNCs showed excellent results in live cell luminescence imaging for A549 cancer cells. Our study demonstrates that host–guest self-assembly assisted by macrocycles is a facile and effective tool to non-covalently modify and adjust optical properties of nanostructures on ultra-small scales.

A host–guest self-assembly approach was developed to brighten Au22(FGGC)18 nanoclusters between CB[n] (n = 7, 8) and FGGC peptide in aqueous solutions.  相似文献   

20.
Recently, chemical interface damping (CID) has been proposed as a new plasmon damping pathway based on interfacial hot-electron transfer from metal to adsorbate molecules. It has been considered essential, owing to its potential implications in efficient photochemical processes and sensing experiments. However, thus far, studies focusing on controlling CID in single gold nanoparticles have been very limited, and in situ reversible tuning has remained a considerable challenge. In these scanning electron microscopy-correlated dark-field spectroscopic measurements and density functional theory calculations, cucurbit[7]uril (CB[7])-based host–guest supramolecular interactions were employed to examine and control the CID process using monoamine-functionalized CB[7] (CB[7]-NH2) attached to single gold nanorods (AuNRs). In situ tuning of CID through the CB[7]–oxaliplatin complexation, which can result in the variation of the chemical nature and electronic properties of adsorbates, was presented. In addition, in situ tuning of CID was demonstrated through the competitive release of the oxaliplatin guest from the oxaliplatin@CB[7] complex, which was then replaced by a competitor guest of spermine in sufficient amounts. Furthermore, nuclear magnetic resonance experiments confirmed that the release of the guest is the consequence of adding salt (NaCl). Thus, in situ reversible tuning of CID in single AuNRs was achieved through successive steps of encapsulation and release of the guest on the same AuNR in a flow cell. Finally, single CB[7]-NH2@AuNRs were presented as a recyclable platform for CID investigations after the complete release of guest molecules from their host–guest inclusion complexes. Therefore, this study has paved a new route to achieve in situ reversible tuning of CID in the same AuNR and to investigate the CID process using CB-based host–guest chemistry with various guest molecules in single AuNRs for efficient hot-electron photochemistry and biosensing applications.

This study has paved a new route to achieve in situ reversible tuning of chemical interface damping (CID) in the same gold nanorod (AuNR) and to investigate the CID process using cucurbituril (CB)-based host–guest chemistry with various guest molecules in single AuNRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号