首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Olfactory receptors (ORs) represent the largest subfamily of the superfamily G protein‐coupled receptors (GPCRs). This family of membrane receptors functions as essential gateway for activation of many cellular signaling pathways. Finding universal principles underlying GPCR activation by studying ORs is important for the design of new therapeutics that target olfaction‐related and other GPCR‐malfunctioning diseases. In addition, gaining knowledge regarding the interactions between ORs and their cognate ligands (odorants) may contribute to solve the puzzle of how odor perception is encoded in humans. As no crystal structure of an OR is available yet, homology modeling can be applied to generate a three‐dimensional OR model. Molecular docking, molecular dynamics simulations and qualitative structure‐activity‐relationship can further guide experimental research by investigating interactions at the atomic level. This article will review these computational techniques as well as present databases and popular software suites, which can support researchers in the OR research field. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The G-protein coupled receptors (GPCRs) play fundamental roles in the human biololgy and drug discovery. GPCRs function as signalling molecules that transduce extracellular signals into cells. The signalling transduction is generally triggered by interacting with ligands, including photons, ions, small organic compounds, peptides, proteins and lipids. In this review, we focus on interactions with diffusible ligands such as hormones and neurotransmitters. We discuss three aspects of the complexity of the GPCR-ligand interactions: functional selectivity of ligands, receptor subtype selectivity of ligands and orphan GPCRs.  相似文献   

3.
G-protein–coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.  相似文献   

4.
Background: Recent studies suggest that lipids, including free fatty acids (FFAs), are necessary for proper μ opioid receptor (MOR) binding and that activation of opioid receptors (ORs) improves intestinal inflammation. The objective of the study was to investigate a possible interaction between the ORs and FFA receptors (FFARs) ligands in the colitis. Methods: The potential synergistic effect of ORs and FFARs ligands was evaluated using mouse model of acute colitis induced by dextran sulfate sodium (DSS, 4%). Compounds were injected intraperitoneally (i.p.) once or twice daily at the doses of 0.01 or 0.02 mg/kg body weight (BW) (DAMGO—an MOR agonist), 0.3 mg/kg BW (DPDPE—a δ OR (DOR) agonist) and 1 mg/kg BW (naloxone—a non-selective OR antagonist, GLPG 0974—a FFAR2 antagonist, GSK 137647—a FFAR4 agonist and AH 7614—a FFAR4 antagonist) for 4 days. Results: Myeloperoxidase (MPO) activity was significantly decreased after DAMGO (0.02 mg/kg BW) and GSK 137647 (1 mg/kg BW) administration and co-administration as compared to DSS group. Conclusions: Treatment with ligands of ORs and FFARs may affect the immune cells in the inflammation; however, no significant influence on the severity of colitis and no synergistic effect were observed.  相似文献   

5.
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Ligand directed signaling is observed when agonists, upon binding to the same receptor, trigger significantly different configuration of intracellular events. The current work reviews the structurally defined ligand – receptor interactions that can be related to specific molecular mechanisms of ligand directed signaling across different receptors belonging to class A of GPCRs. Recent advances in GPCR structural biology allow for mapping receptors’ binding sites with residues particularly important in recognition of ligands’ structural features that are responsible for biased signaling. Various studies show particular role of specific residues lining the extended ligand binding domains, biased agonists may alternatively affect their interhelical interactions and flexibility what can be translated into intracellular loop rearrangements. Studies on opioid and angiotensin receptors indicate importance of residues located deeper within the binding cavity and direct interactions with receptor residues linking the ortosteric ligand binding site with the intracellular transducer binding domain. Collection of results across different receptors may suggest elements of common molecular mechanisms which are responsible for passing alternative signals from biased agonists.  相似文献   

6.
7.
Opioid receptors (ORs) are widely distributed in the brain, the spinal cord, and the digestive tract and play an important role in nociception. All known ORs are G‐protein‐coupled receptors (GPCRs) of family A. Another well‐known member of this family, rhodopsin, is activated by light through the cis/trans isomerization of a covalently bound chromophore, retinal. We now show how an OR can be combined with a synthetic azobenzene photoswitch to gain light sensitivity. Our work extends the reach of photopharmacology and outlines a general strategy for converting Family A GPCRs, which account for the majority of drug targets, into photoreceptors.  相似文献   

8.
Continuous identification and validation of novel drug targets require the development of rapid, reliable, and sensitive cell-based high-throughput screening (HTS) methods for proposed targets. Recently, the 5-HT(6) receptor (5-HT(6)R), a member of the class of recently discovered 5-HT receptors, has received considerable attention for its possible implications in depression, cognition, and anxiety. However, the cellular signaling mechanisms of 5-HT(6)R are poorly understood due to the lack of selective 5-HT(6)R ligands. In the present study, we examined functional coupling of the human 5-HT(6)R, 5-HT(7A)R, or 5-HT(7B)R with various Galpha-proteins (Galpha(15), Galpha(qs5), or Galpha(qG66Ds5)) to develop a reliable cell-based HTS method for 5-HT receptors. Among variable couplings between 5-HT receptors and G-proteins, we found that functional coupling of human 5-HT(6)R with Galpha(qG66Ds5) produced the highest levels of Ca(2+) signaling in HEK293 cells as measured by the fluorescence-based HTS plate reader, FDSS6000. After validation of this new 5-HT(6)R HTS system (Z'-factor = 0.56) in 96-well plates and characterization of the pharmacological profile of the 5-HT(6)R, we screened approximately 500 synthetic chemical compounds including butanamide and benzenesulfonamide derivatives. Based on this preliminary screening, we found that the butanamide derivative LSG11104 produced an IC(50) value of 6.3 microM. This compound will serve as a lead structure for further chemical modification to develop novel 5-HT(6)R ligands. Furthermore, we demonstrated that this HTS method can be utilized to identify proteins that modulate 5-HT(6)R function and present Fyn tyrosine kinase as an example, which is already known as a 5-HT(6)R interacting protein. Taken together, these results suggest that the 5-HT(6)R/Galpha(qG66Ds5) FDSS6000 system can be utilized to screen for selective 5-HT(6)R ligands and to examine any functional relationships between 5-HT(6)R and its binding proteins.  相似文献   

9.
G protein-coupled receptors (GPCRs) represent one of the most important categories of membrane proteins that play important roles in signaling pathways. GPCRs transduce the extracellular stimuli into intracellular second messengers via their coupling to specific class of heterotrimeric GTP-binding proteins (G proteins) and the subsequent regulation of a diverse variety of effectors. Understanding the coupling specificity of GPCRs is critical for further comprehending their function, and is of tremendous clinical significance because GPCRs are the most successful drug targets. This minireview addresses the computational approaches that have been created for the prediction of coupling specificity of GPCRs and highlights the perspective of bioinformatics strategies that may be used to tackle this important task. In addition, some of the important resources of this field are also provided.  相似文献   

10.
G-protein-coupled receptors (GPCRs) are ubiquitous mediators of signal transduction across cell membranes and constitute a very important class of therapeutic targets. In order to study the complex biochemical signaling network coupling to the intracellular side of GPCRs, it is necessary to engineer and control the downstream signaling components, which is difficult to realize in living cells. We have developed a bioanalytical platform enabling the study of GPCRs in their native membrane transferred inside-out from live cells to lectin-coated beads, with both membrane sides of the receptor being accessible for molecular interactions. Using heterologously expressed adenosine A(2A) receptor carrying a yellow fluorescent protein, we showed that the tethered membranes comprised fully functional receptors in terms of ligand and G protein binding. The interactions between the different signaling partners during the formation and subsequent dissociation of the ternary signaling complex on single beads could be observed in real time using multicolor fluorescence microscopy. This approach of tethering inside-out native membranes accessible from both sides is straightforward and readily applied to other transmembrane proteins. It represents a generic platform suitable for ensemble as well as single-molecule measurements to investigate signaling processes at plasma membranes.  相似文献   

11.
G protein-coupled receptors (GPCRs) which constitute one of the largest and most versatile families of cell surface receptors are involved in a wide spectrum of physiological functions, such as, neuronal transmission, chemotaxis, pacemaker activity and embryonic development. Therefore, in the past a few years GPCR families have become very important targets in pharmaceutical design. However, according to the human genome project, there are approximately 1000 genes encoding GPCRs, only about 200 of GPCRs have known ligands and functions. Searching for ligands of the unknown GPCRs and better modulators of known GPCRs are currently attracting lots of interest. High throughput screening (HTS), which is commonly defined as an automatic process of testing potential drug candidates efficiently, is widely used in drug discovery. In this review, the use of high throughput screening (HTS) in studying GPCRs and the choice of screening technology in different G-protein signaling pathways were summarized.  相似文献   

12.
Some key concerns raised by molecular modeling and computational simulation of functional mechanisms for membrane proteins are discussed and illustrated for members of the family of G protein coupled receptors (GPCRs). Of particular importance are issues related to the modeling and computational treatment of loop regions. These are demonstrated here with results from different levels of computational simulations applied to the structures of rhodopsin and a model of the 5-HT2A serotonin receptor, 5-HT2AR. First, comparative Molecular Dynamics (MD) simulations are reported for rhodopsin in vacuum and embedded in an explicit representation of the membrane and water environment. It is shown that in spite of a partial accounting of solvent screening effects by neutralization of charged side chains, vacuum MD simulations can lead to severe distortions of the loop structures. The primary source of the distortion appears to be formation of artifactual H-bonds, as has been repeatedly observed in vacuum simulations. To address such shortcomings, a recently proposed approach that has been developed for calculating the structure of segments that connect elements of secondary structure with known coordinates, is applied to 5-HT2AR to obtain an initial representation of the loops connecting the transmembrane (TM) helices. The approach consists of a simulated annealing combined with biased scaled collective variables Monte Carlo technique, and is applied to loops connecting the TM segments on both the extra-cellular and the cytoplasmic sides of the receptor. Although this initial calculation treats the loops as independent structural entities, the final structure exhibits a number of interloop interactions that may have functional significance. Finally, it is shown here that in the case where a given loop from two different GPCRs (here rhodopsin and 5-HT2AR) has approximately the same length and some degree of sequence identity, the fold adopted by the loops can be similar. Thus, in such special cases homology modeling might be used to obtain initial structures of these loops. Notably, however, all other loops in these two receptors appear to be very different in sequence and structure, so that their conformations can be found reliably only by ab initio, energy based methods and not by homology modeling.  相似文献   

13.
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.  相似文献   

14.
GPCRs had significant representation in the drug discovery portfolios of most major commercial drug discovery organizations for many years. This is due in part to the diverse biological roles mediated by GPCRs as a class, as well as the empirical discovery that they have proven relatively tractable to the development of small molecule therapeutics. Publication of the human genome sequence in 2001 confirmed GPCRs as the largest single gene superfamily with more than 700 members, furthering the already strong appeal of addressing this target class using efficient and highly parallelized platform approaches. The GPCR research platform implemented at Amgen is used as a case study to review the evolution and implementation of available assays and technologies applicable to GPCR drug discovery. The strengths, weaknesses, and applications of assay technologies applicable to G alpha s, G alpha i and G alpha q-coupled receptors are described and their relative merits evaluated. Particular consideration is made of the role and practice of "de-orphaning" and signaling pathway characterization as a pre-requisite to establishing effective screens. In silico and in vitro methodology developed for rapid, parallel high throughput hit characterization and prioritization is also discussed extensively.  相似文献   

15.
Using unnatural amino acid mutagenesis, the binding site for serotonin at the novel Caenorhabditis elegans receptor MOD-1 has been probed. As with the closely related serotonin receptor 5-HT3, MOD-1 makes use of a strong cation-pi interaction between the ammonium of serotonin and the indole side chain of a tryptophan. However, the specific Trp used by MOD-1 is different from that used for 5-HT3 (and the nAChR), aligning with a residue more than 40 amino acids distant in sequence space and on a different "loop" of the agonist binding site. This suggests a significant rearrangement of the ligand on binding these two closely related receptors. It is suggested that, unlike enzymes, receptors and other signaling molecules may need only to deliver an agonist to a general binding region, rather than establishing precise drug-receptor interactions.  相似文献   

16.
Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic–mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.  相似文献   

17.
The practical implementation and validation of a ligand-based approach to mining the chemogenomic space of drugs is presented and applied to the in silico target profiling of 767 drugs against 684 targets of therapeutic relevance. The results reveal that drugs targeting aminergic G protein-coupled receptors (GPCRs) show the most promiscuous pharmacological profiles. The detection of cross-pharmacologies between aminergic GPCRs and the opioid, sigma, NMDA, and 5-HT3 receptors aggravate the potential promiscuity of those drugs, predominantly including analgesics, antidepressants, and antipsychotics.  相似文献   

18.
Macrophages are phagocytic cells which are involved in the non-specific immune defense. Lipid uptake and storage behavior of macrophages also play a key role in the development of atherosclerotic lesions within walls of blood vessels. The allocation of exogenous lipids such as fatty acids in the blood stream dictates the accumulation and quantity of lipids within macrophages. In case of an overexposure, macrophages transform into foam cells because of the large amount of lipid droplets in the cytoplasm. Raman micro-spectroscopy is a powerful tool for studying single cells due to the combination of microscopic imaging with spectral information. With a spatial resolution restricted by the diffraction limit, it is possible to visualize lipid droplets within macrophages. With stable isotopic labeling of fatty acids with deuterium, the uptake and storage of exogenously provided fatty acids can be investigated. In this study, we present the results of time-dependent Raman spectroscopic imaging of single THP-1 macrophages incubated with deuterated arachidonic acid. The polyunsaturated fatty acid plays an important role in the cellular signaling pathway as being the precursor of icosanoids. We show that arachidonic acid is stored in lipid droplets but foam cell formation is less pronounced as with other fatty acids. The storage efficiency in lipid droplets is lower than in cells incubated with deuterated palmitic acid. We validate our results with gas chromatography and gain information on the relative content of arachidonic acid and its metabolites in treated macrophages. These analyses also provide evidence that significant amounts of the intracellular arachidonic acid is elongated to adrenic acid but is not metabolized any further. The co-supplementation of deuterated arachidonic acid and deuterated palmitic acid leads to a non-homogenous storage pattern in lipid droplets within single cells. Figure a
?  相似文献   

19.
Systemin, an 18-amino acid signaling peptide isolated from tomato leaves, has been found to be an integral component of the jasmine acid signaling pathway, leading to the synthesis of protease inhibitors (PIs). The discovery of systemin has led to a search for other peptide signals involved in defense in the Solanaceae and in other plant families. A new class of peptides having similar signaling properties but little sequence homology to systemin have been found and termed hydroxyproline-rich glycopeptide systemins (HypSys). These small (18-20 amino acids) glycopeptides, like systemin, are derived from larger precursor proteins (proHypSys) and until recently were thought to function only in protection from herbivore attack. However, HypSys peptides isolated from petunia induced the defensin gene, known for its involvement in pathogen defense. More recently, a HypSys glycopeptide was isolated from sweet potato, a member of the Convolvulaceae family and found to induce the sporamin gene which codes for the major storage protein in tubers with trypsin inhibitor activity. These recent discoveries expand the function and range of the HypSys family of glycopeptides and establish these unique inducible signaling molecules as potential components of defense pathways throughout the Eudicots. Herein we review the signaling and structural properties of systemin and the HypSys glycopeptides and their roles in the induction of PIs.  相似文献   

20.
胆结石是常见多发病, 但临床缺乏有效的治疗药物. 饱和脂肪酸与胆酸的缀合物能有效预防胆固醇结晶、溶解体内胆固醇结石. 以胆酸或熊去氧胆酸24位羧基为连接位点, 以氨基酸为连接子, 通过酰胺键将载体与具有溶石活性的饱和脂肪酸偶联, 设计合成了一系列新型脂肪酸胆酸缀合物, 其结构经元素分析, IR, 1H NMR和MS光谱分析确证. 通过测定化合物对模型胆汁溶液胆固醇结晶及模型小鼠胆结石的溶解活性, 研究了其体内外溶石活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号