首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of high-brightness far-red-emitting phosphors with emission wavelength within 650–750 nm is of great significance for indoor plant cultivation light-emitting diode (LED) lighting. Herein, we demonstrate a novel efficient far-red-emitting phosphors CaMg2La2W2O12:Mn4+ (abbreviated as CMLW:Mn4+) toward application in plant cultivation LEDs. Interestingly, the CMLW:Mn4+ phosphors show a broad excitation band in the 250–600 nm spectral range with two peaks at 352 and 479 nm, indicating they could be efficiently excited by near-ultraviolet and blue light. Under 352 nm excitation, the CMLW:Mn4+ phosphors exhibit an intense far-red emission band in the wavelength range of 650–800 nm peaking at 708 nm, corresponding to the 2Eg → 4A2g transition of Mn4+ ions. Mn4+ doping concentration-dependent luminescence properties are studied in detail, and the concentration quenching mechanism is also investigated. Particularly, the internal quantum efficiency of CMLW:Mn4+ phosphors reaches as high as 44%, and their PL spectra match well with the absorption spectrum of phytochrome PFR (PFR stands for far-red-absorbing form of phytochrome). Furthermore, a prototype LED device is fabricated by coating the as-prepared CMLW:0.8%Mn4+ phosphors on a 460 nm blue LED chip, which produces bright far-red emissions upon 20–300 mA driving currents. This work reveals that the newly discovered far-red-emitting CMLW:Mn4+ phosphors hold great potential for application in indoor plant cultivation.  相似文献   

2.
An enzyme (Phospholipase C Type I from Clostridium perfringens) was exposed to 0-810Jcm(-2) of energy using laser light at wavelengths 808, 532, 1064 and 1342nm and two LED light sources at wavelengths 810 and 640nm. Enzyme responses were evaluated by measuring ceramide concentration using high performance thin-layer chromatography (HPTLC) at 0.5, 1, 2, 3, 4, 6, 17, 24h after irradiation. The duration of effect was evaluated from the experimental data. The results show that enzyme activity can be increased by using both laser and LED sources whose wavelength is located within a certain range. The effect depends on the energy and wavelength of the light. The increase in enzyme activity continued for about 4h after irradiation. This study shows that the duration of irradiation should be included as one of the main laser parameters when reporting on the effects of laser irradiation on enzymes. We also find that laser sources and LED sources have the same effect on enzyme activity if the wavelength and absorbed energy are equal.  相似文献   

3.
Brassicaceae baby-leaves are good source of functional phytochemicals. To investigate how Chinese kale and pak-choi baby-leaves in response to different wavebands of blue (430 nm and 465 nm) and UV-A (380 nm and 400 nm) LED, the plant growth, glucosinolates, antioxidants, and minerals were determined. Both agronomy traits and phytochemical contents were significantly affected. Blue and UV-A light played a predominant role in increasing the plant biomass and morphology, as well as the contents of antioxidant compounds (vitamin C, vitamin E, phenolics, and individual flavonols), the antioxidant activity (DPPH and FRAP), and the total glucosinolates accumulation. In particular, four light wavebands significantly decreased the content of progoitrin, while 400 nm UV-A light and 430 nm blue light were efficient in elevating the contents of sinigrin and glucobrassicin in Chinese kale. Meanwhile, 400 nm UV-A light was able to increase the contents of glucoraphanin, sinigrin, and glucobrassicin in pak-choi. From the global view of heatmap, blue lights were more efficient in increasing the yield and phytochemical levels of two baby-leaves.  相似文献   

4.
Light-emitting diodes (LEDs) can be easily and inexpensively integrated into modern light microscopes. There are numerous advantages of LEDs as illumination sources; most notably, they provide brightness and spectral control. We demonstrate that for transmitted light imaging, an LED can replace the traditional tungsten filament bulb while offering longer life; no color temperature change with intensity change; reduced emission in the infrared region, which is important for live cell imaging; and reduced cost of ownership. We show a direct substitution of the typical tungsten bulb with a commercially available LED and demonstrated the color stability by imaging a histology section over a wide range of light intensities. For fluorescent imaging, where the typical illumination sources are mercury or xenon lamps, we demonstrate that LEDs offer advantages of providing a longer lifespan, having a more constant intensity output over time, more homogeneous illumination, and significantly lower photon dose. Our LED equipped system was used to image and deconvolve dual fluorescently labeled cells, as well as image cells undergoing mitosis expressing green fluorescent protein-histone 2B complex. The timing of the stages of mitosis is well established as an indicator of cell viability.  相似文献   

5.
Light emitting diodes(LEDs) are gaining recognition as a convenient and energy-efficient light source for photocatalytic application. This review focuses on recent progress in the research and development of the degradation of dyes in water under LED light irradiation and provides a brief overview of photocatalysis, details of the LEDs commonly employed, a discussion of the advantages of LEDs over traditional ultraviolet sources and their application to photocatalytic dye degradation. We also discuss the experimental conditions used, the reported mechanisms of dye degradation and the various photocatalytic reactor designs and pay attention to the different types of LEDs used, and their power consumption. Based on a literature survey, the feasibility, benefits, limitations, and future prospects of LEDs for use in photocatalytic dye degradation are discussed in detail.  相似文献   

6.
King M  Paull B  Haddad PR  Macka M 《The Analyst》2002,127(12):1564-1567
Light emitting diodes (LEDs) are known to be excellent light sources for detectors in liquid chromatography and capillary electromigration separation techniques, but to date only LEDs emitting in the visible range have been used. In this work, a UV LED was investigated as a simple alternative light source to standard mercury or deuterium lamps for use in indirect photometric detection of inorganic anions using capillary electrophoresis with a chromate background electrolyte (BGE). The UV LED used had an emission maximum at 379.5 nm, a wavelength at which chromate absorbs strongly and exhibits a 47% higher molar absorptivity than at 254 nm when using a standard mercury light source. The noise, sensitivity and linearity of the LED detector were evaluated and all exhibited superior performance to the mercury light source (up to 70% decrease in noise, up to 26.2% increase in sensitivity, and over 100% increase in linear range). Using the LED detector with a simple chromate-diethanolamine background electrolyte, limits of detection for the common inorganic anions, Cl-, NO3-, SO4(2-), F- and PO4(3-) ranged from 3 to 14 microg L(-1), using electrostatic injection at -5 kV for 5 s.  相似文献   

7.
Light quality has been reported to influence the phytochemical profile of broccoli sprouts/microgreens; however, few studies have researched the influence on mature broccoli. This is the first study to investigate how exposing a mature glasshouse grown vegetable brassica, Tenderstem® broccoli, to different light wavelengths before harvest influences the phytochemical content. Sixty broccoli plants were grown in a controlled environment glasshouse under ambient light until axial meristems reached >1 cm diameter, whereupon a third were placed under either green/red/far-red LED, blue LED, or remained in the original compartment. Primary and secondary spears were harvested after one and three weeks, respectively. Plant morphology, glucosinolate, carotenoid, tocopherol, and total polyphenol content were determined for each sample. Exposure to green/red/far-red light increased the total polyphenol content by up to 13% and maintained a comparable total glucosinolate content to the control. Blue light increased three of the four indole glucosinolates studied. The effect of light treatments on carotenoid and tocopherol content was inconclusive due to inconsistencies between trials, indicating that they are more sensitive to other environmental factors. These results have shown that by carefully selecting the wavelength, the nutritional content of mature broccoli prior to harvest could be manipulated according to demand.  相似文献   

8.
LEDs present an alternative to lasers in LIF detection with CE, resulting in LED-induced fluorescence (LEDIF). LEDs are much less expensive, consume less energy and are more stable. In addition, LED light sources allow a greater range of wavelengths to better match the maximum wavelength for the fluorescence of the dye. Antibodies were largely studied in SDS capillary gel electrophoresis (SDS-CGE) and LIF detection with different dyes to label the proteins. In this work, our goal is to show that LEDs can advantageously replace lasers. We used 5-carboxytetramethylrhodamine succinimidyl ester (5-TAMRA.SE), 3-(2-furoyl)-quinoline-2 carboxaldehyde (FQ), and naphthalene-2,3-dialdehyde (NDA) to label IgG and we compared the LIF sensitivity with that obtained from LEDIF. We measured that the LOD values of LEDIF are identical to that obtained with the wavelength equivalent laser, and for 5-TAMRA.SE analysis, LOD values are about six times better than when the classical 488 nm laser was used.  相似文献   

9.
金属卤化物钙钛矿作为一类新型的离子型直接带隙半导体材料在电致发光二极管(LED)中有着重要应用前景. 但实现其应用的前提在于金属卤化物钙钛矿材料需要保持高的发光效率和好的稳定性. 为了提高金属卤化物钙钛矿作为LED发光层的激子结合效率, 从而提升其发光效率, 设计和合成金属卤化物钙钛矿纳米晶材料是一个有效途径. 目前, 基于纳米晶材料设计的金属卤化物钙钛矿LED在绿光和红光(包括近红外光)范围已经展现了高的发光亮度和外量子效率(EQE), 其中最高EQE已经超过了20%, 但其稳定性仍无法满足器件应用的要求. 此外, 更值得关注且更重要的是, 蓝光钙钛矿LED的发光亮度和EQE目前仍然不高. 如何制备高效、 稳定的金属卤化物钙钛矿纳米晶LED, 特别是蓝光LED, 是一个具有重大应用前景且具有挑战性的课题. 本文重点介绍了金属卤化物钙钛矿纳米发光层的结构设计和合成方法及金属卤化物钙钛矿LED的研究进展, 分析了金属卤化物钙钛矿LED不稳定的原因, 并对金属卤化物钙钛矿LED研究面临的挑战和未来发展方向进行了总结与展望.  相似文献   

10.
Zhang T  Fang Q  Wang SL  Qin LF  Wang P  Wu ZY  Fang ZL 《Talanta》2005,68(1):19-24
The signal-to-noise level of light emitting diode (LED) fluorimetry using a liquid-core-waveguide (LCW)-based microfluidic capillary electrophoresis system was significantly enhanced using a synchronized dual wavelength modulation (SDWM) approach. A blue LED was used as excitation source and a red LED as reference source for background-noise compensation in a microfluidic capillary electrophoresis (CE) system. A Teflon AF-coated silica capillary served as both the separation channel and LCW for light transfer, and blue and red LEDs were used as excitation and reference sources, respectively, both radially illuminating the detection point of the separation channel. The two LEDs were synchronously modulated at the same frequency, but with 180°-phase shift, alternatingly driven by a same constant current source. The LCW transferred the fluorescence emission, as well as the excitation and reference lights that strayed through the optical system to a photomultiplier tube; a lock-in amplifier demodulated the combined signal, significantly reducing its noise level. To test the system, fluorescein isothiocyanate (FITC)-labeled amino acids were separated by capillary electrophoresis and detected by SDWM and single wavelength modulation, respectively. Five-fold improvement in S/N ratio was achieved by dual wavelength modulation, compared with single wavelength modulation; and over 100-fold improvement in S/N ratio was achieved compared with a similar LCW-CE system reported previously using non-modulated LED excitation. A detection limit (S/N = 3) of 10 nM FITC-labeled arginine was obtained in this work. The effects of modulation frequency on S/N level and on the rejection of noise caused by LED-driver current and detector were also studied.  相似文献   

11.
Biostimulants and bioprotectants are derived from natural sources and can enhance crop growth and protect crops from pests and pathogens, respectively. They have attracted much attention in the past few decades and contribute to a more sustainable and eco-friendly agricultural system. Despite not having been explored extensively, plant extracts and their component secondary metabolites, including phenolic compounds have been shown to have biostimulant effects on plants, including enhancement of growth attributes and yield, as well as bioprotectant effects, including antimicrobial, insecticidal, herbicidal and nematicidal effects. Medicinal and aromatic plants are widely distributed all over the world and are abundant sources of phenolic compounds. This paper reviews the characterisation of phenolic compounds and extracts from medicinal and aromatic plants, including a brief overview of their extraction, phytochemical screening and methods of analysis. The second part of the review highlights the potential for use of phenolic compounds and extracts as biostimulants and bioprotectants in agriculture as well as some of the challenges related to their use.  相似文献   

12.
Even though many organic dyes have been reported as photoinitiators/photosensitizers for free radical polymerization in the literature, the design and development of novel photoinitiating systems based on organic dyes adaptable for visible light irradiation, for example, 405 nm LED and sunlight still remains challenging. Recently, major achievements in the development of high-performance photoinitiating systems based on organic dyes as light-harvesting compounds and their uses as photoinitiators for photopolymerization under visible-light irradiation have clearly emerged, giving rise to abundant literature. In this review, an overview of the recently synthesized chromophores belonging to various families of organic dyes and used as photoinitiators of polymerization during the 2018–2021 period are presented and classified. Recent works have resulted in the development of new chromophores exhibiting remarkable visible light absorption properties and excellent photoinitiation abilities upon irradiation with LEDs and/or sunlight in free radical photopolymerization processes. These developments notably indicate that sunlight has the advantages of being a cheap, unlimited, broad emission spectrum, and energy-saving light source capable to be an efficient substitute to artificial light sources. The newly developed dye-based photoinitiating systems designed to initiate visible-light-induced photopolymerization processes are likely to expand the scope of application of photopolymerization in modern sciences and technologies.  相似文献   

13.
Photosynthesis (Pn) and photomorphogenesis (Pm) are affected by light quality, light intensity and photoperiod. Although blue light (BL) is necessary for normal development, it is less efficient in driving Pn than other wavelengths of photosynthetically active radiation. The effects of BL on Pm are highly species dependent. Here we report the interacting effects of BL and photosynthetic photon flux (PPF) on growth and development of lettuce, radish and pepper. We used light‐emitting diode (LED) arrays to provide BL fractions from 11% to 28% under broad‐spectrum white LEDs, and from 0.3% to 92% under monochromatic LEDs. All treatments were replicated three times at each of two PPFs (200 and 500 μmol m?2 s?1). Other than light quality, environmental conditions were uniformly maintained across chambers. Regardless of PPF, BL was necessary to prevent shade‐avoidance responses in radish and lettuce. For lettuce and radish, increasing BL reduced stem length, and for both species, there were significant interactions of BL with PPF for leaf expansion. Increasing BL reduced petiole length in radish and flower number in pepper. BL minimally affected pepper growth and other developmental parameters. Pepper seedlings were more photobiologically sensitive than older plants. Surprisingly, there were few interactions between monochromatic and broad‐spectrum light sources.  相似文献   

14.
UV-B EFFECTS ON TERRESTRIAL PLANTS   总被引:15,自引:0,他引:15  
The potential impacts of an increase in solar UV-B radiation reaching the Earth's surface due to stratospheric ozone depletion have been investigated by several research groups during the last 15 years. Much of this research has centered on the effects of plant growth and physiology under artificial UV-B irradiation supplied to plants in growth chambers or greenhouses. Since these artificial sources do not precisely match the solar spectrum and due to the wavelength dependency of photobiol-ogical processes, weighting functions, based on action spectra for specific responses, have been developed to assess the biological effectiveness of the irradiation sources and of predicted ozone depletion. Recent experiments have also utilized artificially produced ozone cuvettes to filter natural solar radiation and simulate an environment of reduced UV-B for comparative purposes. Overall, the effectiveness of UV-B varies both among species and among cultivars of a given species. Sensitive plants often exhibit reduced growth (plant height, dry weight, leaf area, etc.), photosynthetic activity and flowering. Competitive interactions may also be altered indirectly by differential growth responses. Photosynthetic activity may be reduced by direct effects on photosynthetic enzymes, metabolic pathways or indirectly through effects on photosynthetic pigments or stomatal function. The fluence response of these changes has yet to be clearly demonstrated in most cases. Plants sensitive to UV-B may also respond by accumulating UV-absorbing compounds in their outer tissue layers, which presumably protect sensitive targets from UV damage. Several key enzymes in the biosynthetic pathways of these compounds have been shown to be specifically induced by UV-B irradiation. Few studies have documented the effects of UV-B on total plant yield under field conditions. One notable exception is a 6-yr study with soybean demonstrating harvestable yield reductions under a simulated 25% ozone depletion. These effects are further modified by prevailing microclimatic conditions. Plants tend to be less sensitive to UV-B radiation under drought or mineral deficiency, while sensitivity increases under low levels of visible light. Further studies are needed to understand the mechanisms of UV-B effects and the interactions with present stresses and future projected changes in the environment.  相似文献   

15.
Developing efficient and cheap photocatalysts that are sensitive to indoor light is promising for the practical application of photocatalysis technology. Here, N-doped TiO2 photocatalyst with loaded Cu crystalline cocatalyst is synthesized by a simple one-pot method. The structure is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy analysis, which exhibit that Cu metal nanocrystalline is uniformly deposited on the surface of N-doped TiO2 material. UV-Vis absorption spectra illustrate that the modified samples possess favorable visible light absorption properties and suppressed-electron hole separation. The as-fabricated Cu-loaded N-TiO2 materials show high activity in photocatalytic decomposing isopropanol and inactivating E. coli under the irradiation of a household white LED lamp. The developed synthetic strategy and photocatalytic materials reported here are promising for indoor environment purification.  相似文献   

16.
The lack of a comparative study about potential of high-power light emitting diodes (LEDs) for photodynamic inactivation (PDI) of pathogenic microorganisms has remained as a challenging issue for researchers. Therefore, the aim of this study is to fill this gap through introduction of an efficient model for in vitro PDI in an aqueous medium. For this purpose, two individual 30 mW/cm2 irradiation systems were designed using suitable sets of green and red LEDs. At another work, Methylene blue (MB) and Rose bengal (RB) as two simple models in the range of 5–150 μM were used in order to compare PDI of E. coli PTCC 1276 using red and green LED systems. Our results showed that a first-order mathematical model has the strength to describe the temporal variation of survival curves. Based on our results, when concentration of photosensitizer increased, the rate of inactivation for RB increased while MB depicted a maximum rate value at 25 μM. In a comparative study, optimum inactivation of E. coli PTCC 1276 obtained during 2- and 10-min irradiation of the LED systems using RB and MB at 150 and 25 μM, respectively. With regard to lower value of inactivation time and higher rate of inactivation for RB, use of simultaneous green high-power LEDs and RB is proposed as an efficient approach for PDI of pathogenic bacteria in future industrial applications.  相似文献   

17.
We developed a highly effective and self-sustaining route for synthesizing Sr(2)Si(5)N(8):Eu(2+) red-emitting phosphor particles for use in light emitting diodes (LEDs). The phosphors thus synthesized showed excellent emission characteristics under a blue excitation wavelength of 450 nm, had a uniform particle size distribution, and showed high performance in LED packages.  相似文献   

18.
Different strategies have been developed to increase the concentration of bioactive compounds in tomatoes during post-harvest, with ultraviolet light (UV) and light emitting diodes (LEDs) being interesting tools. The aim of this study was to evaluate the effect of ultraviolet (UVA at 366 nm and UVC at 254 nm) pre-treatment (1 kJ/m2) and red–blue LED light (25.4 µmol/m2/s) on the concentration of carotenoids, (poly)phenols and hydrophilic/lipophilic antioxidant capacity during 7 days of refrigeration storage of green tomatoes (Solanum lycopersicum L.) cultivar “Raf”. In addition, special attention was paid to quality parameters (weight loss, colour, acidity, soluble solids and ripening index). Tomatoes exposed to LED light at 6 °C for 7 days increased up to three times the total carotenoids content (mainly β-carotene and E-lycopene) compared to tomatoes refrigerated in the dark, while UV treatments alone did not significantly affect the carotenoid content. Besides, exposure to LEDs increased the hydrophilic and lipophilic antioxidant capacity of tomatoes by 30%, without affecting phenolic contents. Thus, LED treatments alone during refrigerated storage fostered ripening and improved the nutritional value of tomatoes, without compromising quality parameters. Further studies must be carried out to evaluate the impact on sensory attributes and consumer acceptance.  相似文献   

19.
Limited environmental pollutants have only been investigated for the feasibility of light‐emitting diodes (LED) uses in photocatalytic decomposition (PD). The present study investigated the applicability of LEDs for annular photocatalytic reactors by comparing PD efficiencies of dimethyl sulfide (DMS), which has not been investigated with any LED‐PD system, between photocatalytic systems utilizing conventional and various LED lamps with different wavelengths. A conventional 8 W UV/TiO2 system exhibited a higher DMS PD efficiency as compared with UV‐LED/TiO2 system. Similarly, a conventional 8 W visible‐lamp/N‐enhanced TiO2 (NET) system exhibited a higher PD efficiency as compared with six visible‐LED/NET systems. However, the ratios of PD efficiency to the electric power consumption were rather high for the photocatalytic systems using UV‐ or visible‐LED lamps, except for two LED lamps (yellow‐ and red‐LED lamps), compared to the photocatalytic systems using conventional lamps. For the photocatalytic systems using LEDs, lower flow rates and input concentrations and shorter hydraulic diameters exhibited higher DMS PD efficiencies. An Fourier‐transformation infrared analysis suggested no significant absorption of byproducts on the catalyst surface. Consequently, it was suggested that LEDs can still be energy‐efficiently utilized as alternative light sources for the PD of DMS, under the operational conditions used in this study.  相似文献   

20.
Light quality is essential in in vitro cultures for morphogenesis process. Light emitting diodes system (LED) allows adjustment as desired and the most appropriate light spectrum. The study analyzed the influence of different LED light quality on the balance of endogenous phytohormones and related compounds (PhRC) in in vitro multiplied axillary shoots of Gerbera jamesonii. Over a duration of 40 days, the shoots were exposed to 100% red light, 100% blue light, red and blue light at a 7:3 ratio with control fluorescent lamps. Every 10 days plant tissues were tested for their PhRC content with the use of an ultra-high performance liquid chromatography (UHPLC). Shoots’ morphometric features were analyzed after a multiplication cycle. We identified 35 PhRC including twelve cytokinins, seven auxins, nine gibberellins, and seven stress-related phytohormones. Compounds content varied from 0.00052 nmol/g to 168.15 nmol/g of dry weight (DW). The most abundant group were stress-related phytohormones (particularly benzoic and salicylic acids), and the least abundant were cytokinins (about 370 times smaller content). LED light did not disturb the endogenous phytohormone balance, and more effectively mitigated the stress experienced by in vitro grown plants than the fluorescent lamps. The stress was most effectively reduced under the red LED. Red and red:blue light lowered tissue auxin levels. Blue LED light lowered the shoot multiplication rate and their height, and induced the highest content of gibberellins at the last stage of the culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号