首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
(LiCo3/5Fe1/5Mn1/5)VO4 ceramic was synthesized via solution-based chemical method. X-ray diffraction analysis was carried out on the synthesized powder sample at room temperature, which confirms the orthorhombic structure with the lattice parameters of a = 10.3646 (20) Å, b = 3.7926 (20) Å, c = 9.2131 (20) Å. Field emission scanning electron microscopic analysis was carried out on the sintered pellet sample that indicates grains of unequal sizes (~0.1 to 2 μm) presents average grains size with polydisperse distribution on the surface of the ceramic. Complex impedance spectroscopy (CIS) technique is used for the study of electrical properties. CIS analysis identifies: (i) grain interior, grain boundary and electrode–material interface contributions to electrical response (ii) the presence of temperature dependent electrical relaxation phenomena in the ceramics. Detailed conductivity study indicates that electrical conduction in the material is a thermally activated process. The variation of A.C. conductivity with frequency at different temperatures obeys Jonscher's universal law.  相似文献   

2.
A versatile route has been explored for the synthesis of nanorods of transition metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates using reverse micelles. Transmission electron microscopy shows that the as-prepared nanorods of nickel and copper oxalates have diameter of 250 nm and 130 nm while the length is of the order of 2.5 μm and 480 nm, respectively. The aspect ratio of the nanorods of copper oxalate could be modified by changing the solvent. The average dimensions of manganese, zinc and cobalt oxalate nanorods were 100 μm, 120 μm and 300 nm, respectively, in diameter and 2.5 μm, 600 nm and 6.5 μm, respectively, in length. The aspect ratio of the cobalt oxalate nanorods could be modified by controlling the temperature.The nanorods of metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates were found to be suitable precursors to obtain a variety of transition metal oxide nanoparticles. Our studies show that the grain size of CuO nanoparticles is highly dependent on the nature of non-polar solvent used to initially synthesize the oxalate rods. All the commonly known manganese oxides could be obtained as pure phases from the single manganese oxalate precursor by decomposing in different atmospheres (air, vacuum or nitrogen). The ZnO nanoparticles obtained from zinc oxalate rods are ~55 nm in diameter. Oxides with different morphology, Fe3O4 nanoparticles faceted (cuboidal) and Fe2O3 nanoparticles (spherical) could be obtained.  相似文献   

3.
《Solid State Sciences》2007,9(9):777-784
Petroleum coke and those heat-treated at 1860 °C, 2100 °C, 2300 °C 2600 °C and 2800 °C (abbreviated as PC, PC1860, PC2100, PC2300, PC2600 and PC2800) were fluorinated by elemental fluorine of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Natural graphite powder samples with average particle sizes of 5 μm, 10 μm and 15 μm (abbreviated as NG5μm, NG10μm and NG15μm) were also fluorinated by ClF3 of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Transmission electron microscopic (TEM) observation revealed that closed edge of PC2800 was destroyed and opened by surface fluorination, which increased the first coulombic efficiencies of PC2300, PC2600 and PC2800 by 12.1–18.2% at 60 mA/g and by 13.3–25.8% at 150 mA/g in 1 mol/dm3 LiClO4–ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume). Light fluorination of NG10μm and NG15μm increased the first coulombic efficiencies by 22.1–28.4% at 150 mA/g in 1 mol/dm3 LiClO4–EC/DEC/PC (PC: propylene carbonate, 1:1:1 in volume).  相似文献   

4.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

5.
LiSbO3 has been synthesized by chemical mixing followed by thermal treatment at 800 °C. Field emission scanning electron microscopy revealed bar shaped multifaceted grains, 0.5–4 μm long and 0.5–1 μm wide, that cluster together as soft agglomeration. 2032 type coin cell vs Li/Li+ shows a flat charge–discharge plateau together with low Li intercalation/de-intercalation potential (0.2/0.5 V). A high discharge capacity of 580 mA h g?1 has been obtained in the 1st cycle with 100% Coulombic efficiency. About 96% of the Coulombic efficiency is retained up to the 12th cycle, but at the 15th cycle, the Coulombic efficiency drops down to 88%. AC impedance spectroscopy shows an increase in electrolyte resistance (Rs) from 4.43 Ohm after the initial cycle to 12.4 Ohm after the 15th cycle indicating a probable dissolution of Sb into the electrolyte causing the capacity fading observed.  相似文献   

6.
A model has been constructed for H2 permeation through Pd which accounts for external mass transfer, surface adsorption and desorption, transitions to and from the bulk metal, and diffusion within the metal. Reasonable values for all rate parameters have been estimated based on surface science and membrane literature. In the absence of external mass transfer resistance, nearly diffusion-limited permeation is expected for clean Pd for temperatures above approximately 573 K and membrane thicknesses down to 1 μm. Low-temperature permeation is limited by desorption while adsorption is only expected to impact permeation at very low upstream H2 partial pressures, or under conditions of substantially reduced sticking due to surface contamination. The efficiency of external gas-phase mass transfer is a critical element in permeation flux and apparent Sievert's law behavior for Pd membranes approaching 10 μm and thinner, especially at low H2 partial pressures or when a porous support is present. Comparison of the calculations with literature results for Pd membranes less than 10 μm thick reveals that permeation rates well below those expected are often observed, indicating the importance of factors related to fabrication methods, such as film microstructure, grain size, and surface or grain boundary contamination.  相似文献   

7.
We have developed a high temperature superconductor (HTS) micro SQUID magnetometer for molecular-based magnets. By employing the dipole approximation, we verified the flux value of 40Φ0 from the saturation magnetic moment of the ferrimagnetic microcrystal of [Mn2(H2O)2(CH3COO)][W(CN)8] · 2H2O (15 × 15 × 13 μm). Considering the relative arrangement of the sample and the SQUID loop, including the influence of the film and grease, the calculated the flux values were Φ = 71Φ0 and 31Φ0 at distances of 20 and 30 μm between the sample bottom face and the SQUID plane, respectively. Thus, the experimentally obtained flux value is reasonable.  相似文献   

8.
Basic experimental steps in the combinatorial synthesis of cuprate superconductors and magnetic separation of ceramic grains obtained within random reaction mixtures were elaborated. By use of two component grains (i/j) in the size range 80–100 μm, reaction conditions were provided which lead to necking in between adjacent grains. The originally introduced single sample concept (SSC) was thus expanded to a random neck synthesis (RNS). In situ demonstration of superconductivity for single grains down to 1 ppm of occurence in random reaction mixtures became possible. Application of AC magnetic fields (at 50 Hz) leads to arbitrary motions of superconducting grains which allowed to distinguish them from normal state matter. Separation was performed by a single Fe-wire magnetized parallel to gravity. Because no magnetic forces are acting in the horizontal direction, in situ inclination of the capturing wire made it possible to collect individual grains in a small container for taking them out of the setup after warming up. Suspensions in liquid oxygen of YBa2Cu3Ox were used to demonstrate the procedure from random neck synthesis to an X-ray and SQUID analyses of magnetically separated grains.  相似文献   

9.
Sr - doped NiO ceramic was studied. The effect of composition variation of Ni(1-x)SrxO where x = 0, 0.01, 0.02, 0.03, 0.05 and 0.10 mole % was prepared by using solid state method. The calcination temperature used at 950 °C for 4 hours and the sintering temperature used at 1200 °C for 3 hours. The results depict the microstructures increase in grains size (0.43 - 3.30 μm) by increase of Sr dopant contents. The density and porosity testing support the result of microstructures analysis. The larger grains size led to increase in density and lower in porosity. The dielectric properties is observed in a wide frequency range of (1 - 1 000 MHz). The increase of dielectric constant is associated with the decrease of dielectric loss. The optimum composition was obtained for the x = 0.03 mole % sample with highest dielectric constant (3.24 x 103) and lowest dielectric loss (1.42) at 1 MHz.  相似文献   

10.
Ellipsoidal K2Ta2O3F6 particles with an average length of 2.79 μm and a diameter of 0.63 μm were synthesized by anodization in saturated solutions of potassium chloride containing 5 wt% HF. Microstructure and composition analysis were conducted by scanning electron microscopy, X-ray diffractometry and energy dispersive spectroscopy. Formation mechanism of this special morphology was given based on the experimental results.  相似文献   

11.
Bioactive zirconium oxide nanotubular arrays on zirconium alloys are prepared electrochemically in fluoride and phosphate containing electrolyte. Geometric factors of the ZrO2 nanotubular layers, particularly the pore diameter and thickness, are affected by the electrochemical conditions, including applied potential and anodization time. Under specific sets of conditions, highly ordered ZrO2 nanotubular arrays are formed with diameters varying from 30 nm to 75 nm and lengths varying from 2 μm to 12 μm. XPS shows that the nanotubular layer contains a significant amount of phosphate species distributed almost homogeneously over the entire tubular length. The ZrO2 nanotubular layer formed in fluoride and phosphate containing electrolyte highly enhances the formation of bioactive hydroxyapatite coating in simulated biological fluid (SBF).  相似文献   

12.
《Solid State Sciences》2007,9(5):404-409
Laser zone melting was employed in this work to prepare MTiO3 based coatings over commercial, polycrystalline Al2O3 substrates, using the corresponding mixtures of powdered alkaline earth carbonates and TiO2 as starting materials. In situ synthesis of the series M = Ca, Sr, Ba was studied using a CO2 laser as the heating source, emitting at 10.6 μm, following substrate preheating to a temperature of 750 °C and sample displacement speed of 500 mm h−1. Microstructure (SEM) and phase composition (XRD) demonstrated in situ formation of crystalline MTiO3 perovskite (M = Ca, Sr), MAl2O4 (M = Ca), MAl12O19 magnetoplumbite type (M = Sr) and MAl14O22 β-alumina type (M = Ba) phases. Substantial interaction with the substrate resulted in stable, 50–150 μm thick, composite coatings.  相似文献   

13.
HCOOH, CH3COOH, and CH3CH2OH were used as chemical modifiers in a solution-cathode glow discharge. Emission was measured directly from the discharge, without a gas–liquid separator or a secondary excitation source. Emission from Ag, Se, Pb, and Hg was strongly enhanced, and the detection limits (DL) for these elements were improved by up to an order of magnitude using a combination of HCOOH and HNO3 compared to using HNO3 alone. The DL was measured for Mg (1 μg/L), Fe (10 μg/L), Ni (6 μg/L), Cu (6 μg/L), Pb (1 μg/L), Ag (0.1 μg/L), Se (300 μg/L), and Hg (2 μg/L). Coefficients of determination (R2) were between 0.9986 and 0.9999. A voltage of 1 kV was used, which produced a current of approximately 70 mA.  相似文献   

14.
Micro-tubular solid-oxide fuel cell consisting of a 10-μm thick (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (ScSZ) electrolyte on a support NiO/(ScSZ) anode (1.8 mm diameter, 200 μm wall thickness) with a Ce0.8Gd0.2O1.9 (GDC) buffer-layer and a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)/GDC functional cathode has been developed for intermediate temperature operation. The functional cathode was in situ formed by impregnating the well-dispersed nano-Ag particles into the porous LSCF/GDC layer using a citrate method. The cells yielded maximum power densities of 1.06 W cm−2 (1.43 A cm−2, 0.74 V), 0.98 W cm−2 (1.78 A cm−2, 0.55 V) and 0.49 W cm−2 (1.44 A cm−2, 0.34 V), at 650, 600 and 550 °C, respectively.  相似文献   

15.
A nano-structure conductive coating was fabricated on a Crofer22APU alloy interconnect by an original coating strategy using Mn0.9Y0.1Co2O4 (MYC) novel spinel nanocrystalline powder. A unique treatment method by which the spinel powder was reduced was used to prepare the green coating. The resulting coating was about 12 μm in thickness, and was composed of MYC nanocrystalline with an average particle size of about 100 nm. The coating was well adhered with the substrate alloy. Less than 4  cm2 of the area specific resistance (ASR) was obtained, and no obvious degradation was observed for a coated alloy (whose coating thickness was about 30 μm) after operated at 800 °C for 538 h under seven thermal cyclings. The coated alloy exhibited excellently electrical performance and long-term stability compared with the uncoated one. The exploration of the novel spinel powder reduction coating technique for alloy interconnect to obtain cheap coatings with excellent microstructure and performance showed a promising prospect for the practical application of solid oxide fuel cells (SOFCs).  相似文献   

16.
Redox stable K2NiF4 type layered perovskite SrLaFeO4  δ(SLFO4  δ) has been prepared and evaluated as anode for solid oxide fuel cell (SOFC). The SLFO4  δ shows linear thermal expansion behavior with TEC of 14.3 × 10 6 K 1. It also demonstrates excellent catalytic activity for various fuels. A scandia stabilized zirconia (ScSZ, 180 μm) electrolyte supported SOFC with the anode achieves maximum power densities (Pmax) of 0.93, 0.76, 0.63, and 0.46 Wcm 2 at 900–750 °C, respectively, in wet H2. Pmaxs of cells supported by 250 μm ScSZ reach 0.57, 0.60 and 0.50 Wcm 2 in H2, H2 + 50 ppm H2S and propane, respectively, at 800 °C. Moreover, the cells show stable power output during ~ 100 h operation at 800 °C under 0.7 V in various fuels. The Pmax at 800 °C in wet H2 even increases by ~ 11% in the subsequent two thermal cyclings, indicating that SLFO4  δ is a promising anode candidate for SOFC with good electro-catalytic activity, high stability and resistance to sulfur and coking.  相似文献   

17.
Reactions of incomplete cubane-type clusters [(Cp°RuCl)2(μ-SH)(μ-SM′Cl2)] (M′ = Sb (2a), Bi; Cp° = η5-C5Me4Et) with 0.5 equiv of [PdCl2(cod)] (cod = 1,5-cyclooctadiene) afforded the corner-shared double cubane-type clusters [{(Cp°Ru)(Cp°RuCl)(μ-SM′Cl2)}23-S)2(μ-Cl)2Pd] (3a: M′ = Sb, 3b: M′ = Bi) in moderate yields, whereas treatment of 2a with 0.75 equiv of [PdCl2(cod)] gave the corner-shared triple cubane-type cluster [{(Cp°Ru)(Cp°RuCl)(μ-SSbCl2)(μ3-S)2(μ-Cl)2Pd}2(Cp°Ru)2] (4). Single-crystal X-ray analyses have disclosed the detailed structures of novel heptanuclear and decanuclear mixed-metal cores for 3a and 4, respectively.  相似文献   

18.
0.3 wt % ammonium fluoride (NH4F) or ammonium chloride (NH4Cl) was added to ethylene glycol (EG) as an active ingredient for the formation of anodic oxide comprising of ZrO2 nanotubes (ZNTs) by anodic oxidation of zirconium (Zr) at 20 V for 10 min. It was observed that nanotubes were successfully grown in EG/NH4F/H2O with aspect ratio of 144.3. Shorter tubes were formed in EG/NH4F/H2O2. This could be due to higher excessive chemical etching at the tip of the tubes. When fluoride was replaced by chloride in both electrolytes, multilayered oxide resembling pyramids was observed. The pyramids have width at the bottom of 3-4 μm and the top is 1-2 μm with 10.7 μm height. Oxidation of Zr in EG/NH4Cl/H2O2 was rater rapid. The multilayered structure is thought to have formed due to the re-deposition of ZrO2 or hydrated ZrO2 on the foil inside pores formed within the oxide layer. XRD result revealed an amorphous structure for as-anodized samples regardless of the electrolytes used for this work.  相似文献   

19.
A simple and effective fabrication scheme involving sequential electrophoretic depositions of polystyrene (PS) microspheres (500 nm and 1 μm in diameter) and SiO2 sols (~ 5 nm in diameter) to produce large-area ordered macroporous SiO2 inverse opals (2 × 2 cm2) on ITO substrates is demonstrated. The zeta potentials for PS microsphere suspension and SiO2 sols are measured to determine an optimized processing window in which both samples carry negative surface charges and sol-gel transformation can be properly implemented. Our approach entails the electrophoresis of PS microspheres to render a colloidal crystal with negligible defects. Afterward, SiO2 sols are infiltrated to the interstitial voids among the closely-packed PS microspheres via another electrophoresis process, followed by an oxidation treatment to remove the PS colloidal template and complete the densification of SiO2 gels. The resulting SiO2 inverse opals reveal impressive surface uniformity and structural integrity. Fourier transform infrared spectroscopy confirms the complete removal of PS microspheres, leaving an intact SiO2 skeleton, whereas X-ray diffraction pattern indicates its amorphous nature.  相似文献   

20.
SrFe12O19 (SFO)/Ni0.5Zn0.5Fe2O4 (NZFO) composite ferrite nanofibers with diameters about 120 nm have been prepared by the electrospinning and calcination process. The SFO/NZFO composite ferrites are formed after calcined at 700 °C for 2 h and the composite nanofibers with various mass ratios obtained at 900 °C are fabricated from NZFO grains about 16–40 nm and SFO grains of 19–45 nm with a uniform phase distribution. With the SFO ferrite content increasing, the coercivity (Hc) and remanence (Mr) for the composite ferrite nanofibers initially increase, reaching maximum values of 379.8 kA/m (297 K) and 242.2 kA/m (77 K), 39.1 Am2/kg (297 K) and 53.5 Am2/kg (77 K), respectively, at a mass ratio (SFO:NZFO) of 4, and then show a reduction tendency with a further increase of the mass ratio. This enhancement in magnetic properties is attributed to the competition of the exchange–coupling interaction and the dipolar interaction in the composite nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号