共查询到15条相似文献,搜索用时 15 毫秒
1.
Current wound healing treatments such as bandages and gauzes predominantly rely on passively protecting the wound and do not offer properties that increase the rate of wound healing. While these strategies are strong at protecting any infection after application, they are ineffective at treating an already infected wound or assisting in tissue regeneration. Next‐generation wound healing treatments are being developed at a rapid pace and have a variety of advantages over traditional treatments. Features such as gas exchange, moisture balance, active suppression of infection, and increased cell proliferation are all central to developing the next successful wound healing dressing. Electrospinning has already been shown to have the qualities required to be a key technique of next generation polymer‐based wound healing treatments. Combined with antimicrobial peptides (AMPs), electrospun dressings can indeed become a formidable solution for the treatment of both acute and chronic wounds. The literature on combining electrospinning and AMPs is now starting to increase and this review aims to give a comprehensive overview of the current developments that combine electrospinning technology and AMPs in order to make multifunctional fibers effective against infection in wound healing. 相似文献
2.
The water-soluble polysaccharides extracted from Sipunculus nudus (SNP) was investigated on the lifespan and immune damage repair of Drosophila melanogaster exposed to Cd (VI). SNP increased superoxyde dismutase (SOD), nitrogen monoxide (NO), glutathione peroxidase (GSH-Px) and total anti-oxidation competence (T-AOC), with decreased malondialdehyde (MDA) on D. melanogaster demonstrated that SNP could attenuate oxidative damage of D. melanogaster Exposed to Cd (VI). Real-time PCR and western blot analysis showed that SNP enhanced the gene expression of Diptericin, Drosomycin, Defensin, PGRP-LC and the protein level of Toll, p-JNK and Relish, that suggested the promoting effect of SNP on the immune damage repair of D. melanogaster exposed to Cd (VI). The increased level of Indy, Parkin and AMPK indicated the regulated effect of SNP on the longevity-related pathways through ageing-related moleculars of D. melanogaster exposed to Cd (VI). These results suggested that SNP could also improve the lifespan of D. melanogaster exposed to Cd (VI). 相似文献
3.
Valentina Laghezza Masci Anna‐Rita Taddei Thomas Courant Ozgül Tezgel Fabrice Navarro Franco Giorgi Denis Mariolle Anna‐Maria Fausto Isabelle Texier 《Macromolecular bioscience》2019,19(5)
Curcumin‐loaded collagen cryostructurates have been devised for wound healing applications. Curcumin displays strong antioxidant, antiseptic, and anti‐inflammatory properties, while collagen is acknowledged for promoting cell adhesion, migration and differentiation. However, when curcumin is loaded directly into collagen hydrogels, it forms large molecular aggregates and clogs the matrix pores. A double‐encapsulation strategy is therefore developed by loading curcumin into lipid nanoparticles (LNP), and embedding these particles inside collagen scaffolds. The resulting collagen/LNP cryostructurates have an optimal fibrous structure with ≈100 µm average pore size for sustaining cell migration. Results show that collagen is structurally unaltered and that nanoparticles are homogeneously distributed amidst collagen fibers. Hydrogels soaked in saline buffer release about 20 to 30% of their nanoparticles content within 24 h, while achieved 100% release after 25 days. When exposed to NIH 3T3 fibroblasts, these hydrogels provide a satisfactory scaffold for cell interaction as early as 4 h after seeding, with no cytotoxic counter effect. These positive features make the collagen/lipid cryostructurates a promising material for further use in wound healing. 相似文献
4.
5.
Tianci Zhang Zehong Xiang Lei Liu Zhifang Ma Mikhail Panteleev Fazly I. Ataullakhanov Qiang Shi 《Macromolecular bioscience》2023,23(10):2300036
Tight manipulation of the initial leukocytes infiltration and macrophages plasticity toward the M2 phenotype remain a challenge for diabetic wound healing. Inspired by the platelet function and platelet–macrophage interaction, a platelet-anchored polylactic acid-b-polyethylene glycol-b-polylactic acid (PLA-PEG-PLA) electrospun dressing is developed for inflammatory modulation and diabetic wounds healing acceleration. PLA-PEG-PLA electrospun meshes encapsulated with thymosin β4 (Tβ4) and CaCl2 is fabricated with electrospinning, followed by immersion of electrospun mesh in platelet-rich plasma to firmly anchor the platelets. It is demonstrated that the anchored platelets on electrospun mesh can enhance the initial macrophage recruitment and control the Tβ4 release from electrospun meshes to facilitate the macrophages polarization to the M2 phenotype. The inflammatory regulation promotes the expression of vascular endothelial growth factor and the migration of vascular endothelial cells for angiogenesis, resulting in accelerated diabetic wounds healing. Therefore, this work paved a new way to design platelet-inspired electrospun meshes for inflammation manipulation and diabetic wound healing. 相似文献
6.
Tayyeb Ghadimi Soheila Naderi Gharahgheshlagh Noorahmad Latifi Ahmad Hivechi Vahid Hosseinpour Sarmadi Siamak Farokh Forghani Naser Amini Peiman B. Milan Fatemeh Latifi Masoud Hamidi Ghazaleh Larijani Seyed Mohammad Amin Haramshahi Motahareh Abdollahi Fatemeh Ghadimi Saeed Nezari 《Macromolecular bioscience》2023,23(9):2300033
Burn is one of the physically debilitating injuries that can be potentially fatal; therefore, providing appropriate coverage in order to reduce possible mortality risk and accelerate wound healing is mandatory. In this study, collagen/exo-polysaccharide (Col/EPS 1–3%) scaffolds are synthesized from rainbow trout (Oncorhynchus mykiss) skins incorporated with Rhodotorula mucilaginosa sp. GUMS16, respectively, for promoting Grade 3 burn wound healing. Physicochemical characterizations and, consequently, biological properties of the Col/EPS scaffolds are tested. The results show that the presence of EPS does not affect the minimum porosity dimensions, while raising the EPS amount significantly reduces the maximum porosity dimensions. Thermogravimetric analysis (TGA), FTIR, and tensile property results confirm the successful incorporation of the EPS into Col scaffolds. Furthermore,the biological results show that the increasing EPS does not affect Col biodegradability and cell viability, and the use of Col/EPS 1% on rat models displays a faster healing rate. Finally, histopathological examination reveals that the Col/EPS 1% treatment accelerates wound healing, through greater re-epithelialization and dermal remodeling, more abundant fibroblast cells and Col accumulation. These findings suggest that Col/EPS 1% promotes dermal wound healing via antioxidant and anti-inflammatory activities, which can be a potential medical process in the treatment of burn wounds. 相似文献
7.
Marek Konop Anna K. Laskowska Mateusz Rybka Ewa Kodziska Dorota Sulejczak Robert A. Schwartz Joanna Czuwara 《Molecules (Basel, Switzerland)》2021,26(9)
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice. 相似文献
8.
《Macromolecular bioscience》2018,18(7)
An extracellular matrix‐mimicking hydrogel is developed consisting of a hyaluronan‐derived component with anti‐inflammatory activity, and a gelatin‐derived component offering adhesion sites for cell anchorage. The in situ‐forming hyaluronan‐gelatin (HA‐GEL) hydrogel displays a sponge‐like microporous morphology. Also, HA‐GEL shows a rapid swelling pattern reaching maximum weight swelling ratio within 10 min, while at the equilibrium state, fully swollen hydrogels display an exceedingly high water content with ≈2000% of the dry gel weight. Under typical 2D cell culture conditions, murine 3T3 fibroblasts adhere to, and proliferate on top of the HA‐GEL substrates, which demonstrate that HA‐GEL provides a favorable microenvironment for cell survival, adhesion, and proliferation. In vivo healing study further demonstrates HA‐GEL as a viable and effective treatment option to improve the healing outcome of full thickness wounds in diabetic mice by effectively depleting the inflammatory chemokine monocyte chemoattractant protein‐1 in the wound bed. 相似文献
9.
Lixiang Zhang Zhengchao Yuan Muhammad Shafiq Youjun Cai Zewen Wang Piming Nie Xiumei Mo Yuan Xu 《Macromolecular bioscience》2023,23(4):2200500
Growth factors are essential for wound healing owing to their multiple reparative effects. Concentrated growth factor (CGF) is a third-generation platelet extract containing various endogenous growth factors. Herein, a CGF extract solution is combined with gelatin methacrylate (GM) by physical blending to produce GM@CGF hydrogels for wound repair. The GM@CGF hydrogels show no immune rejection during autologous transplantation. Compared to CGF, GM@CGF hydrogels not only exhibit excellent plasticity and adhesivity but also prevent rapid release and degradation of growth factors. The GM@CGF hydrogels display good injectability, self-healing, swelling, and degradability along with outstanding cytocompatibility, angiogenic functions, chemotactic functions, and cell migration-promoting capabilities in vitro. The GM@CGF hydrogel can release various effective molecules to rapidly initiate wound repair, stimulate the expressions of type I collagen, transform growth factor β1, epidermal growth factor, and vascular endothelial growth factor, promote the production of granulation tissues, vascular regeneration and reconstruction, collagen deposition, and epidermal cell migration, as well as prevent excessive scar formation. In conclusion, the injectable GM@CGF hydrogel can release various growth factors and provide a 3D spatial structure to accelerate wound repair, thereby providing a foundation for the clinical application and translation of CGF. 相似文献
10.
Paramita Gayen Somnath Jan Dr. Nilkanta Chowdhury Dr. Snehasish Ghosh Monjuri Hembram Dr. Angshuman Bagchi Dr. Rituparna Sinha Roy 《化学:亚洲杂志》2021,16(24):4018-4036
Developing non-immunogenic therapeutic biomolecules for facilitating blood clotting followed by wound healing via therapeutic angiogenesis, still remains a formidable challenge. Excessive blood loss of accident victims and battalions cause a huge number of deaths worldwide. Patients with inherited bleeding disorders face acute complications during injury and post-surgery. Biologically-inspired peptide-based hemostat can act as a potential therapeutic for handling coagulopathy. Additionally, non-healing wounds for patients having ischemic diseases can cause severe clinical complications. Advancement in stabilized growth-factor-based proangiogenic therapy may offer effective possibilities for the treatment of ischemic pathology. This review will discuss nature-inspired biocompatible stabilized peptide- and protein-based molecular medicines to serve unmet medical challenges for handling traumatic coagulopathy and impaired wound healing. 相似文献
11.
In recent years, interest has surged among researchers to determine compounds from bee products such as honey, royal jelly, propolis and bee pollen, which are beneficial to human health. Mass spectrometry techniques have shown that bee products contain a number of proven health-promoting compounds but also revealed rather high diversity in the chemical composition of bee products depending on several factors, such as for example botanical sources and geographical origin. In the present paper, we present recent scientific advances in the field of major bioactive compounds from bee products and corresponding regenerative properties. We also discuss extracellular vesicles from bee products as a potential novel bioactive nutraceutical component. Extracellular vesicles are cell-derived membranous structures that show promising potential in various therapeutic areas. It has been extensively reported that the use of vesicles, which are naturally formed in plant and animal cells, as delivery agents have many advantages. Whether the use of extracellular vesicles from bee products represents a new solution for wound healing remains still to be elucidated. However, promising results in specific applications of the bee products in wound healing and tissue regenerative properties of extracellular vesicles provide a good rationale to further explore this idea. 相似文献
12.
This study was conducted to investigate the chemical composition of essential oil (EO) extracted from an oleoresin of Canarium schweinfurthii widespread in the Gabonese tropical forest. A great variability in the chemical composition of EO was observed, among which a chemical profile rich in terpinolene and α-phellandrene (31.2 and 21.8%, respectively), was found and tested as a natural active ingredient for topical applications. After the evaluation of eye and skin irritancy and sensitization potentials of EO on in vitro and in chemico models, the in vitro modulating potential on a model of wound re-epithelialization was assessed. The terpinolene and α-phellandrene-rich chemotype have been proven to accelerate wound healing in a dose-dependent manner (concentration range from 1.8 to 9.0 μg/mL). In addition, the ability of this EO to modulate the pro-inflammatory response in human keratinocytes stimulated by UVB was observed in vitro by the reduction in levels of interleukin 6 (IL-6) and tumour necrosis factor-alpha (TNF-α), suggesting a possible implication during the inflammation phase of wound healing. Despite the high variability in EO composition, a method of solid-phase microextraction (SPME) of the oleoresin headspace is proposed for the in situ identification of the terpinolene and α-phellandrene-rich chemotype instead of conducting hydrodistillation. These results offer interesting perspectives for the development of innovative natural ingredients for the topical route, ingredients obtained in an eco-responsible and non-destructive way. 相似文献
13.
Minguen Yoon Seol Hwa Seo Seonghwi Choi Gyoonhee Han Kang-Yell Choi 《Molecules (Basel, Switzerland)》2022,27(20)
The activation of the Wnt/β-catenin signaling pathway plays a key role in the wound-healing process through tissue regeneration. The extract of Euodia daniellii Hemsl. (E. daniellii), a member of the Rutaceae family, activates the Wnt/β-catenin signaling pathway. However, the function of E. daniellii in wound healing has not yet been elucidated. We performed a migration assay to determine the wound-healing effect of E. daniellii extract in vitro using human keratinocytes and dermal fibroblast. In addition, a mouse acute wound model was used to investigate the cutaneous wound-healing effect of E. daniellii extract in vivo and confirm the potential mechanism. E. daniellii extract enhanced the migration of human keratinocytes and dermal fibroblasts via the activation of the Wnt/β-catenin pathway. Moreover, the E. daniellii extract increased the levels of keratin 14, PCNA, collagen I, and α-SMA, with nuclei accumulation of β-catenin in vitro. E. daniellii extract also efficiently accelerated re-epithelialization and stimulated wound healing in vivo. Furthermore, we confirmed that hesperidin, one of the components of E. daniellii, efficiently accelerated the migration of human keratinocytes and dermal fibroblasts, as well as wound healing in vivo via the activation of the Wnt/β-catenin pathway. Overall, E. daniellii extract and its active component, hesperidin, have potential to be used as therapeutic agents for wound healing. 相似文献
14.
Saeed Ali Alsareii Abdulrahman Manaa Alamri Mansour Yousef AlAsmari Mohammed A. Bawahab Mater H. Mahnashi Ibrahim Ahmed Shaikh Arun K. Shettar Joy H. Hoskeri Vijay Kumbar 《Molecules (Basel, Switzerland)》2022,27(19)
Silver nanoparticles (AgNPs) have recently gained interest in the medical field because of their biological features. The present study aimed at screening Rhizophora apiculata secondary metabolites, quantifying their flavonoids and total phenolics content, green synthesis and characterization of R. apiculata silver nanoparticles. In addition, an assessment of in vitro cytotoxic, antioxidant, anti-inflammatory and wound healing activity of R. apiculata and its synthesized AgNPs was carried out. The powdered plant material (leaves) was subjected to Soxhlet extraction to obtain R. apiculata aqueous extract. The R. apiculata extract was used as a reducing agent in synthesizing AgNPs from silver nitrate. The synthesized AgNPs were characterized by UV-Vis, SEM-EDX, XRD, FTIR, particle size analyzer and zeta potential. Further aqueous leaf extract of R. apiculata and AgNPs was subjected for in vitro antioxidant, anti-inflammatory, wound healing and cytotoxic activity against A375 (Skin cancer), A549 (Lung cancer), and KB-3-1 (Oral cancer) cell lines. All experiments were repeated three times (n = 3), and the results were given as the mean ± SEM. The flavonoids and total phenolics content in R. apiculata extract were 44.18 ± 0.086 mg/g of quercetin and 53.24 ± 0.028 mg/g of gallic acid, respectively. SEM analysis revealed R. apiculata AgNPs with diameters ranging from 35 to 100 nm. XRD confirmed that the synthesized silver nanoparticles were crystalline in nature. The cytotoxicity cell viability assay revealed that the AgNPs were less toxic (IC50 105.5 µg/mL) compared to the R. apiculata extract (IC50 47.47 µg/mL) against the non-cancerous fibroblast L929 cell line. Antioxidant, anti-inflammatory, and cytotoxicity tests revealed that AgNPs had significantly more activity than the plant extract. The AgNPs inhibited protein denaturation by a mean percentage of 71.65%, which was equivalent to the standard anti-inflammatory medication diclofenac (94.24%). The AgNPs showed considerable cytotoxic effect, and the percentage of cell viability against skin cancer, lung cancer, and oral cancer cell lines was 31.84%, 56.09% and 22.59%, respectively. R. apiculata AgNPs demonstrated stronger cell migration and percentage of wound closure (82.79%) compared to the plant extract (75.23%). The overall results revealed that R. apiculata AgNPs exhibited potential antioxidant, anti-inflammatory, wound healing, and cytotoxic properties. In future, R. apiculata should be further explored to unmask its therapeutic potential and the mechanistic pathways of AgNPs should be studied in detail in in vivo animal models. 相似文献
15.
《Macromolecular bioscience》2017,17(2)
An in situ‐forming gel system comprised of diblock copolymer formed from polyethylene glycol (PEG) and polycaprolactone (PCL) {MPEG‐b‐(PCL‐ran‐PLLA)} could be used in controlled drug delivery for tissue remodeling. The purpose of this study is to demonstrate favorable vocal folds (VF) regeneration by using MPEG‐b‐(PCL‐ran‐PLLA) diblock copolymers (C97L3; CL/LA ratio 97:3) incorporating hepatocyte growth factor (HGF). Gradual release of HGF from C97L3 is detected and biochemical properties of released HGF are maintained. A scar is made with microscissors on both VFs in 32 rabbits, followed by injection of HGF‐only, C97L3‐only, or HGF‐C97L3 composite gel in the left side VF, while the right side VF is left untreated. In vivo fluorescence live imaging system demonstrates that C97L3 enables the sustained release of injected HGF in the scarred VF for 12 weeks. The histological analysis shows increased glycosaminoglycan including hyaluronic acid accumulation and decreased collagen deposition. Videokymographic analysis shows more favorable vibrations of HGF‐C97L3 treated VF mucosa, compared to other treatment groups. In conclusion, the controlled HGF release helps to regulate extracellular matrix synthesis, and leads to the eventual functional improvement of the scarred VF.