首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用密度泛函理论(DFT)以及广义梯度近似方法(GGA)计算了甲酸根(HCOO)在Cu(110)、Ag(110)和Au(110)表面的吸附. 计算结果表明, 短桥位是最稳定的吸附位置, 计算的几何参数与以前的实验和计算结果吻合. 吸附热顺序为Cu(110)(-116 kJ·mol-1)>Ag(110)(-57 kJ·mol-1)>Au(110)(-27 kJ·mol-1), 与实验上甲酸根的分解温度相一致. 电子态密度分析表明, 吸附热顺序可以用吸附分子与金属d-带之间的Pauli 排斥来关联, 即排斥作用越大, 吸附越弱. 另外还从计算的吸附热数据以及实验上HCOO的分解温度估算了反应CO2+1/2H2→HCOO的活化能, 其大小顺序为Au(110)>Ag(110)>Cu(110).  相似文献   

2.
The adsorption energies for single Ni atom on CuAl2O4(100) and (110) surfaces are 5.30 and 4.08 eV, respectively. The growth and aggregation of Ni can be effectively inhibited on the perfect CuAl2O4(100) surface. The adsorption of Ni on the spinel surface is accompanied by charge transfer. The interaction of Ni with CuAl2O4 surface is stronger than with the γ-Al2O3(110) surface.  相似文献   

3.
Scanning tunneling microscopy investigations of adsorption and film growth of various fullerenes on semiconductor and metal surfaces are reviewed. The fullerenes being studied are C60, C70, C84, Sc@C82 and Y@C82 and the substrates being used for adsorption are Si (111), Si (100), Ge (111), GaAs (110), GaAs (001), Au (111), Au (110), Au (100), Cu (111) and Ag (111) surfaces.  相似文献   

4.
Molecular adsorption of formate and carboxyl on stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory (DFT+U) calculations. Two distinguishable adsorption modes (strong and weak) of formate are identified. The bidentate configuration is more stable than the monodentate adsorption configuration. Both formate and carboxyl bind at the more open CeO2(110) surface are stronger. The calculated vibrational frequencies of two adsorbed species are consistent with the experimental measurements. Finally, the effects of U parameters on the adsorption of formate and carboxyl over both CeO2 surfaces were investigated. We found that the geometrical configurations of two adsorbed species are not affected by different U parameters (U = 0, 5, and 7). However, the calculated adsorption energy of carboxyl pronouncedly increases with the U value while the adsorption energy of formate only slightly changes (<0.2 eV). The Bader charge analysis shows the opposite charge transfer occurs for formate and carboxyl adsorption where the adsorbed formate is negatively charge while the adsorbed carboxyl is positively charged. Interestingly, with the increasing U parameter, the amount of charge is also increased.  相似文献   

5.
An investigation has been made on the adsorption and decomposition of formic acid on slightly oxidized Nb(110) surface (0/Nb atom ratio = 0.2) using high resolution electron energy loss spectroscopy (HREELS),and a corresponding surface reaction mode is given.At 140 K,formic acid of low exposure on such an Nb(110) surface decomposed to formate,which bonded on Nb in monodentate configuration,simultaneously some formate decomposed to CO,which adsorbed on the surface.Formic acid multilayers formed when the exposure was high.While the temperature was increased to above 190 K,multilayer formic acid desorbed,and the surface was covered with mon-odentate-bonded formate and CO.In the temperature range of 250-300 K,chemisorbed formate changed from monodentate configuration into bridging configuration and CO molecules disappeared.The decomposition of formate at higher temperatures led to the oxidation of Nb.The formate formed in the high exposure case was so stable that it did not decompose even the temperature wa  相似文献   

6.
氢分子在金属表面的解离吸附与氢原子在金属体相的扩散是个典型的表面过程.前者在甲烷化及合成氨等基础化工反应中起着关键作用;后者常常导致金属材料的脆化与断裂,但过渡金属及其合金是安全和优良的储氢材料.因此,研究氢分子在金属表面的解离吸附与氢原子在金属体相的扩散,是多相催化与金属物理广泛感兴趣的课题,具有重要的理论和应用价值.本文采用分子动力学方法初步探讨了二者之间的关联.分子催化动力学为从微观层次上研究上述课题提供了一种理论方法.本文采用经过我们改进的半经验LEPS方法,计算了氢分子在Pd(100)和(110)晶面的解离和氢原子在钯表面与体相扩散的相互作用位能面,并根据计算结果探讨了其微观机理.  相似文献   

7.
Structural effects on intermediate species of methanol oxidation are studied on low-index planes of platinum using in-situ infrared (IR) spectroscopy. A flow cell is designed for rapid migration of reactant and product species on the electrode surface. IR spectra show adsorption of formate and the formation of carbonate species on the Pt(111) surface at potentials higher than that of CO oxidation. The band assignments for carbonate and formate are confirmed by vibrational isotope shifts. On Pt(100), the absorption band of adsorbed formate is much smaller than that on Pt(111). On the other hand, there is no adsorbed formate on Pt(110) in the potential region examined. The band intensity of formate follows the order: Pt(111)>Pt(100)>Pt(110). This order is opposite to that of the current density in the regions of higher potential. Adsorbed formate on Pt(111) behaves like a catalyst-poisoning intermediate, like adsorbed CO.  相似文献   

8.
采用第一性原理密度泛函计算方法和周期性平板模型系统研究了放射性碘分子在Cu2O三个低指数表面的吸附行为。通过计算若干平衡吸附构型的结构参数和吸附能评估了不同特征吸附位的作用。构型优化计算表明所选晶面存在适度的结构弛豫。计算结果表明,与Cu2O(110)表面相比,Cu2O(100)和(111)晶面表现出更高的碘分子吸附反应活性。其中,表面氧原子位(OS)和配位未饱和铜原子位(CuCUS)分别为Cu2O(100)和(111)晶面的能量最优吸附位点。此外,针对几种典型吸附结构计算分析了其电子结构信息,以进一步阐明吸附体系之间的相互作用机理。  相似文献   

9.
张静  刁兆玉  王泽新  丰慧  郝策 《化学学报》2005,63(14):1276-1280
应用原子和表面簇合物相互作用的5参数Morse势方法(简称5-MP)对Cl-Ag低指数表面体系进行了研究, 并获得了全部的临界点特性, 如吸附位、吸附几何、结合能、正则振动等. 计算结果表明: 在Ag(100)面上, Cl原子吸附在四重洞位; 在Ag(111)面上, Cl吸附在三重洞位; 尽管第一与第二周期原子在(110)面上的稳定吸附态大都为赝式三重位和长桥位, 但在Ag(110)面上, 四重洞位是氯原子的稳定吸附态. 理论分析结果和实验推测结果符合得很好. 理论结果给出Cl原子在Ag表面的吸附结合能和表面簇合物的粗糙度有关, 结合能从小到大的顺序为(111)<(100)<(110).  相似文献   

10.
以氧化镧催化剂在甲烷氧化偶联(OCM)反应中的结构敏感性实验研究为基础, 采用周期性密度泛函理论(DFT)计算研究氧化镧(001), (110)和(100)3个晶面及OCM反应物分子甲烷和氧在其上的吸附、 活化和解离. 结果表明, 氧化镧(001), (110)和(100)3个晶面的表面能大小顺序为(110)>(100)>(001), 3个晶面的价带和导带间隙大小顺序为(110)<(100)<(001), 即(001)是3个晶面中最稳定的晶面, 而(110)则是最活泼的晶面. 甲烷分子在氧化镧(001), (110)和(100)晶面上的吸附很弱(0.03 eV), H—CH3解离吸附能分别为2.16, 0.68和0.90 eV, 解离反应的难易性与晶面的活性顺序一致; 而氧分子在氧化镧(001), (110)和(100)晶面上的分子吸附能分别为-0.04, -0.31和-0.12 eV, 解离吸附能分别为1.22, 0.53和1.52 eV, 即氧化镧晶面结构对氧分子吸附具有明显的影响, 其中, (001)晶面上吸附最弱, (110)晶面上吸附最强, 以致O—O在(110)晶面上可以较低能垒(0.53 eV)解离, 形成亲电的过氧物种. 由于氧分子在氧化镧表面的吸附较甲烷分子强, 因此, 氧化镧在OCM反应中结构敏感性应与氧分子的吸附和活化密切相关. 甲烷和氧分子在氧化镧表面上活化的本质源自于电子自表面流向甲烷和氧分子的反键轨道, 且表面结构的改变会导致不同强度的电子流动驱动.  相似文献   

11.
The conversion of carbon dioxide to chemicals by the electrochemical reactions(ERC)is an efficient solution to the current energy crisis and excess CO2 emissions.It is still a great challenge and of significance to synthesize a highly selective,efficient,and non-noble metal electrocatalyst that facilitates the ERC reaction.A novel triton X-100(C14H22O(C2H4O)n)assisted electrodeposition method was developed to synthesize the ordered cone-structured tin(OCSn)electrocatalysts with controllable morphology and structure.The results suggest that Triton X-100 plays an important role in directing the structure of the Sn electrocatalysts during the electrodeposition process.The OCSn synthesized at 60 m A cm-2 achieves the best performances.It selectively catalyzes the ERC on the onset potential about 110 m V lower than Sn synthesized without Triton X-100.In 0.5 M Na HCO3,high faradaic efficiency(92%)for formate product on OCSn has been achieved.More prominently,the catalyst presents excellent stability,showing no performance deterioration during 30 h electrolysis.This work provides an efficient,green,and scalable synthesis method of the electrocatalyst for CO2 reduction to formate.  相似文献   

12.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

13.
Experiments have revealed that formate synthesis from carbon dioxide and hydrogen is structure insensitive to copper catalyst surfaces, while the reverse formate decomposition reaction is structure sensitive. The present ab initio density functional theory (DFT) calculations show that the reaction of CO2 with surface atomic hydrogen initially leads to the formation of unstable monodentate formate, which has similar adsorption energies on Cu(111), Cu(100), and Cu(110). The structure of the transition state is similar to that of monodentate formate. It is also shown that gaseous CO2 is directly reacted with surface hydrogen, as suggested by previous experiments. The position of the similar transition state and the direct reaction mechanism well explain the similar energetic pathways, that is, the structure insensitivity.  相似文献   

14.
Interest in CO, CO2 and H adsorption on alkali-promoted Cu surfaces stems from the promoting role of alkali metals in heterogeneous catalysis. Adsorption of an alkali metal on a Cu surface causes a substantial decrease in the work function. The change in the electronic structure of the surface has strong consequences for the adsorption and reactive properties of the Cu surfaces. Another important factor for the reaction yields is the corrugation of the surface. The influence of these two parameters, the alkali metal coverage and the corrugation, on the dissociation of CO and the reactions between low-molecular gases like H, CO and CO2 has been investigated on a series of low-index and stepped Cu surfaces. Particularly the synthesis of formate HCOO from coadsorption of H and CO2 has been studied. The experimental evidence for these findings is synchrotron radiation based measurements of valence band energy distributions, and work function measurements. It is demonstrated in this report that CO dissociates on the potassium-modified stepped surface, Cu(1 1 2), at 125 K. The dissociation process is conditioned by the presence of steps and the alkali metal coverage. Carbonate is formed via the process CO + CO →CO2 + C and reaction with oxygen. Adsorption of atomic hydrogen in the presence of K gives rise to two H-1s-induced states in the valence band. The influence of temperature on the binding energies and the population of these states have been studied. Formate is synthesized when the alkali/Cu surface, precovered with hydrogen, is exposed to CO2.  相似文献   

15.
The chemisorption of atoms (H, N, S, O, and C) on Cu surfaces has been systematically studied by the density functional theory generalized gradient approximation method with the slab model. Our calculated results indicate that the orders of the adsorption energy are H < N < S < O < C on Cu(111) and H < N < O < S < C on Cu(110) and Cu(100). Furthermore, the adsorption energies of the given atoms on Cu(100) are larger than those on Cu(111) and Cu(110). The preferred adsorption sites are a 3-fold hollow site on Cu(111) and a 4-fold hollow site on Cu(100), but the preferred adsorption sites on Cu(110) are different for different adatoms. The energy, as well as the geometry, is in good agreement with the experimental and other theoretical data. In addition, this study focuses on the electronic and geometric properties of the metal-atom (M-A) bond to explain the difference in adsorption energies among adatoms. A detailed investigation of the density of states curves explains the nature of the most stable site. Finally, we test the effect of the coverage and find that the surface coverage has no influence on the preferred adsorption sites of the given adatoms on Cu(110) with the exception of hydrogen and oxygen, but has much influence on the value of the adsorption energy.  相似文献   

16.
建立了处理双原子分子-表面相互作用的推广的LEPS势.借助推广的LEPS势,系统研究了一氧化碳分子在铂低指数表面吸附的动力学特性,重现了低指数表面的分子吸附热、吸附几何及本征振动等实验数据;鉴定了某些不合理的文献信息,预测了实验尚未探测到的重要信息:预测到Pt(100)表面四重洞位的C-O伸缩振动频率为1 962.60 cm-1;预测到Pt(110)表面吸附态的C-O及C-Pt键长分别为115.1、147 pm.  相似文献   

17.
Computational study of hydrogen adsorption on (111) surface of transition metals with face centered cubic (fcc) lattice is reported and the results are compared with available experimental and theoretical data. In addition, dissociative adsorption of hydrogen on Pt(111), Pt(100) and Pt(110) is studied in the range of coverage from 0.25 to 1 monolayer. In the case of Pt(111) preferential adsorption site was found to be three-coordinated fcc-hollow site, while on Pt(100) and Pt(110) surface hydrogen settles on two-coordinated bridge and short bridge site, respectively. Hydrogen adsorption energy was found to decrease with the increasing coverage. Structural changes of studied Pt surfaces upon hydrogen adsorption have been compared with the experimental data existing in the literature and good qualitative agreement has been obtained.  相似文献   

18.
The adsorption, vibration, and diffusion of O atoms on Rh(100), Rh(111), Rh(110), and Rh(711) surfaces were studied using the 5-parameter Morse potential (5-MP) of interaction between an adatom and a metal surface cluster. Our theoretical calculations provide information about adsorption sites, adsorption geometry, binding energy, and eigenvibration. Our results agreed very well with experimental results. Four major results follow. First, the theoretical calculation showed that on the Rh(100) surface the 4-fold hollow site is the only adsorption site. Second, on the O-Rh(111) system, the 3-fold hollow site is the stable adsorption site. Third, on the Rh(110) surface at low coverage, the O atom is adsorbed preferably on the pseudo-3-fold site, while with increasing coverage, the O atom is adsorbed not only on the pseudo-3-fold site but also on the long bridge site. Last, as for the Rh(711) stepped surface, the 3-fold site on the (111) step is metastable, whereas the 4-fold sites on the (100) terrace are stable, which enables the O atoms to diffuse easily from the 3-fold to the 4-fold site at low coverage. Therefore, the O atoms are adsorbed preferrably on the stable 4-fold sites of the (100) terrace and then later as coverage increases on the metastable 3-fold site of the (110) step.  相似文献   

19.
原子H在Cu(100)(111)(110)上的吸附扩散研究   总被引:2,自引:1,他引:1  
采用5-MP势方法,对原子氢在金属Cu的3个低指数面上的吸附特性,如吸附几何、吸附能、振动频率等以及吸附扩散势能面结构进行了比较系统的研究,计算结果显示低温低覆盖条件下,氢原子在Cu(110)表面上只存在赝式三重位和长桥位吸附态,没有短桥位吸附态,并且获得了实验和理论的支持.  相似文献   

20.
The interaction of hydrogen with many transition metal surfaces is characterized by a coexistence of activated with non-activated paths to adsorption with a broad distribution of barrier heights. By performing six-dimensional quantum dynamical calculations using a potential energy surface derived from ab initio calculations for the system H2/Pd(100) we show that these features of the potential energy surface lead to strong steering effects in the dissociative adsorption and associative desorption dynamics.

In particular, we focus on the coupling of the translational, rotational and vibrational degrees of freedom of the hydrogen molecule in the reaction dynamics.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号