首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary Metal ion complexes of the thiosemicarbazone, 3-hexamethyleneimine-3-thiocarboxylic acid-2-[1-(2-pyridyl)-ethylidene]hydrazide (HLhexim) have been prepared and spectrally characterized. HLhexim coordinates primarily as the deprotonated tridentate ligand (i.e., pyridylN, azomethineN, and thione sulphur). The air oxidised cobalt(III) complex, [Co(LHexim)2] (BF4), was isolated from the preparation with cobalt(II) tetrafluoroborate, but other cobalt(II) salts yielded tetrahedral cobalt(II) compounds. Planar nickel(II) and copper(II) complexes were isolated from preparations with halide salts. Significant differences in the spectral properties of the various complexes are observed when compared to other thiosemicarbazones prepared from 2-acetylpyridine.  相似文献   

2.
Summary Nickel(II) complexes of 2-acetylpyridine4 N-diethyl- and4 N-dipropylthiosemicarbazone show less activity againstAspercallus niger than the free thiosemicarbazones. However, againstPaecilomyces variotii the nickel(II) complexes possess comparable activity at high concentrations and are more active at lower concentrations. Spectral and thermal information about the nickel(II) complexes, which coordinate the anionic thiosemicarbazone ligands in a tridentate manner, is included.  相似文献   

3.
Summary Metal ion complexes of 2-acetylpyridineS-methyldithiocarbazate, HNNS, have been prepared and spectrally characterised. Preparations in EtOH yield complexes in which the deprotonated ligand, NNS, is complexedvia its pyridyl nitrogen, azomethine nitrogen, and thione sulphur. The stoichiometries are: [M(NNS)2]X (M=Fe3+, Co3+ and X=ClO 4 , [FeCl4], BF 4 , 1/2 [CoCl4]2– and 1/2 [CoBr4]2–), [M(NNS)X] (M=Ni2+, Cu2+ and X=Cl, Br), [Cu(NNS)H2O]BF4 and Ni(HNNS)(NNS)F(EtOH)]BF4. The spectral (i.e., i.r., u.v.-vis.-n.i.r. and e.s.r.) and physical properties of these complexes are compared to those of theS-methyldithiocarbazates of 2-formylpyridine and 2-acetylpyridineN-oxide, as well as the related thiosemicarbazones prepared from 2-acetylpyridine. Thermal studies of the nickel(II) complexes indicate that the nature of thermal decomposition of coordinated NNS is different from that of HNNS.  相似文献   

4.
Summary Metal ion complexes of the thiosemicarbazone,N-dimethyl-2-[1-(2-pyridinyl)ethylidene]hydrazinecarbothioamide (HL4DM) have been prepared and characterized spectrally. HL4DM coordinates primarily as the deprotonated tridentate ligand (i.e., pyrïdylN, azomethineN, and thione sulphur). In contrast to related thiosemicarbazones, oxidation to cobalt(III) does not occur during complex formation with cobalt(II) halides. Oxidation does occur on reflux with ethanolic Co(BF4)2, but we isolated a planar cobalt(II) complex as well. Only with the tetrafluoroborate salts of cobalt(II) and nickel(II) are complexes isolated containing the neutral thiosemicarbazone. Square planar [Ni(L4DM)X]complexes where X=Cl, Br, and OH have been isolated and e.s.r. spectra of a 1% Cu/Ni complex are compared to the results of other workers.  相似文献   

5.
Summary Copper(II) and iron(III) complexes of 2-acetylpyridineN-oxide4 N-ethyl- and4 N-diethylthiosemicarbazones have been prepared and characterized by physical and spectral methods. The4 N-ethyl-derivative coordinates as a neutral, bidentate ligand with copper(II), and the4 N-diethyl- as an anionic, tridentate ligand with both copper(II) and iron(III). The former ligand forms a mixed ligand complex (i.e., one neutral and one anionic ligand) with iron(III).  相似文献   

6.
Summary A series of metal ion complexes of the thiosemicarbazone,N-methyl-2[1-(2-pyridinyl)ethylidene]-hydrazinecarbothioamide (HL4M) has been prepared and spectrally characterized. HL4M coordinates either as a neutral bidentate ligand (i.e., pyridyl N and imine N) or as deprotonated tridentate ligand (i.e., pyridyl N, imine N and thiol sulphur). The cobalt(II) salts yield hexacoordinated cobalt(III) cations, and an isoelectronic species, [Ni(L4M)2], has been formed from Ni(C2H3O2)2. The remaining nickel(II) complexes involve the neutral ligand, as do two of the three copper(II) complexes. HL4M possesses a weaker ligand field and has less covalency in its bonding than related thiosemicarbazones that possess anN-dialkyl-function.  相似文献   

7.
Summary Metal ion complexes of the thiosemicarbazone, 3-piperidinyl-3-thiocarboxylic acid-2-[1-(2-pyridyl)ethylidene]hydrazide (HLpip) have been prepared and spectrally characterized. HLpip coordinates both as the deprotonated ligand (i.e., pyridylN, azomethineN, and thione sulphur) and the neutral ligand (i.e., pyridylN and azomethineN) with the sulphur possibly weakly coordinating in [Ni(HLpip)2](BF4)2. All three preparative cobalt(II) salts yielded cobalt(III) cationic complexes. The nickel(II) and copper(II) chloride salts gave [M(Lpip)Cl] solids while complexes involving the neutral ligand were prepared with the corresponding bromide salts. Significant differences in the spectral properties of the various complexes are observed when compared to other thiosemicarbazones prepared from 2-acetylpyridine.  相似文献   

8.
Schiff-base complexes [ML(H2O)2(Ac)]nH2O (M?=?Co(II), Ni(II) and Zn(II); L?=?Schiff-base ligand derived from 2-acetylpyridine and alanine and n?=?1–3/2) were synthesized and characterized by elemental analysis, spectral (FTIR, UV/Vis, MS, 1H-NMR), thermal (TGA), conductance and magnetic moment measurements. The results suggest octahedral geometry for all the isolated complexes. IR spectra show that the ligand coordinates to the metal ions as mononegative tridentate through pyridyl nitrogen, azomethine nitrogen and carboxylate oxygen after deprotonation of the hydroxyl group. Semi-empirical calculations PM3 and AM1 have been used to study the molecular geometry and the harmonic vibrational spectra to assist the experimental assignments of the complexes.  相似文献   

9.
Summary 4 N-diethyl- and4 N-dipropylthiosemicarbazones of 2-acetylpyridine coordinate to FeIII, CoIII and CoII centres as tridentate NNS ligands. Spectral and physical data indicates that the size of the4 N-substituents can influence the stereochemistry and stoichiometry of the complexes, which show minimal ability to inhibit fungal growth and are considerably less active than the related copper(II) and nickel(II) complexes.  相似文献   

10.
Complexes of Cu(II), Mn(II), Co(II), Ni(II), Hg(II), Cd(II) and Rh(III) with 2-pyridine carboxaldehyde-N-methyl-N-2-pyridylhydrazone ( pamph) have been prepared and characterized. The new complexes have been characterized by elemental analysis, conductivity and magnetic measurements, IR, UV–vis and 1H NMR spectroscopic methods. The microbiological activity of the complexes was investigated against bacteria and fungi. Most of the complexes studied appear to be active against bacteria while all are active against fungi. The Cu, Cd and Hg complexes exhibit the highest activity against both bacteria and fungi.  相似文献   

11.
Summary The interactions of more than forty metal chelate complexes, dithiocarbamates, dithiophosphates and acetylacetonates, with ozone are studied in homogeneous phase and the stoichiometry and the rate constants of the reactions estimated. Most powerful ozone deactivators are nickel(II) and copper(II) dithiocarbamate and dithiophosphate complexes interacting with 6.5 moles ozone per mole of the ligand with rate constant >06m · I–1 · s–1. The remote ligand substituents do not influence the reaction parameters. Other sulphur-containing complexes of iron(III), cobalt(II), cobalt(III), zinc(II), manganese(III), bismuth(III), antimony(III), arsenic(III), cadmium(II), platinum(II), palladium(II) and chromium(III) deactivate 3–4 moles ozone per mole ligand with rate constants of 102–104 m · I–1 · s–1. Acetylacetonate complexes of copper(II), nickel(II), cobalt(III), iron(III), chromium (III), and oxovanadium(II) deactivate 1–3 moles ozone per mole ligand with a rate constant of 10–104 m · I–1 · s–1. Using e.p.r. and electronic spectra, some intermediate products are detected and the mechanism of the reaction is discussed. The reported data are compared with other widely used antiozonants and the metal chelates are shown to have several advantages.  相似文献   

12.
New Mannich bases bis(thiosemicarbazide methyl) phosphinic acid H3L1 and bis(1-phenylsemicarbazide methyl) phosphinic acid H3L2 were synthesized from condensation of phosphinic acid and formaldehyde with thiosemicarbazide and 1-phenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(L n )Cl2], K3[FeII(L1)Cl2], K3[MnII(L2)Cl2], and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Cd(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II), and Fe(II) complexes, square planar for Co(II), Ni(II), and Cu(II) complexes and tetrahedral for the Zn(II) and Cd(II) complexes. Complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M : L) as (1 : 1).  相似文献   

13.
Arylidene-anthranilic acidSchiff base complexes with Th(IV), UO2(II), La(III), Ce(III), and Zr(IV) have been isolated and studied by several techniques, e.g. elemental analysis, electronic and IR spectra and conductance measurements. It is concluded that the salicylideneanthranilic acidL 3 is coordinated to the metal ion as bivalent tridentate ONO ligand (L –2) while the other ligands behave as monovalent bidentate ON ligands. Furthermore, the molecular structure effect of these compounds on their tendency towards complex formation was investigated and discussed. The possibility that the Cu(II) complex ofL 3 can act as bidentate ligand, coordinating through itscis-oxygen atoms to form binuclear metal complexes was studied.
Ein- und zweikernige Metall-Komplexe von Aryliden-Anthranilsäure-Schiff-Basen
Zusammenfassung Es wurden Aryliden-Anthranilsäure-Schiff-Basen mit Th(IV), UO2(II), La(III), Ce(III) und Zr(IV) isoliert und mittels Elementaranalysen, Elektronen-und IR-Spektroskopie und Leitfähigkeitsmessungen untersucht. Es wird aus den Untersuchungen geschlossen, daß Salicylidenanthranilsäure (L 3) als bivalenter dreizähniger ONO-Ligand (L –2) an das Metallion koordiniert, währenddessen die anderen Liganden als monovalente zweizähnige Liganden agieren. Außerdem wurden Struktureffekte dieser Verbindungen in bezug auf ihre Komplexbildungstendenz untersucht. Die Möglichkeit, daß der Cu(II)-Komplex vonL 3 über die Koordination mit dencis-Sauerstoff-Atomen und unter Bildung eines zweikernigen Metallkomplexes als zweizähniger Ligand agieren kann, wurde untersucht.
  相似文献   

14.
New complexes of 2-thione-4,6-diamino-5-hydroxypyrimidine (HTDAHP) with Fe(III), Ni(II), Ag(I) and Ru (II) are described. IR, 1H-NMR and mass spectra, conductivity, magnetic and thermal measurements of the complexes are reported and their structures discussed. HTDAHP behaves as a bidentate ligand, forming five membered hydroxyl-amino chelates or four-membered cyclic nitrogen-sulphur chelates without any participation of the pendant amino or hydroxy groups in complexation. The biological activities of the Ag(I) complexes against fungi (Aspergillus niger and Candida albicans) and bacteria (Staphylococcus aureus and Pseudomonas aeruginosa) have been investigated.  相似文献   

15.
Schiff-base complexes [ML·nH2OAc]mH2O (where L =?Schiff base derived from condensation of 2-acetylpyridine and leucine; M =?Cu(II), Ni(II) or Co(II); n =?0–2 and m =?3/2–2) and [ZnLOH]H2O have been synthesized and characterized using elemental analyses, spectral analyses (UV-Vis, IR, 1H NMR), conductance, thermal analyses, magnetic moments and QSAR analyses. The results showed that the ligand is mononegative tridentate coordinating the metal through pyridyl nitrogen, azomethine nitrogen, and carboxylate oxygen after deprotonation of the hydroxyl. Cu(II) forms square-planar and Ni(II) and Zn(II) form tetrahedral complexes, while Co(II) is octahedral. Prediction from quantitative structure activity relationship (QSAR) for anti-inflammatory activity in rats (% edema inhibition) has been made. The copper complex showed a significant analgesic and antirheumatic effect.  相似文献   

16.
The article describes the synthesis and single-crystal X-ray analysis of two sulfato and one thiocyanato copper(II) complex with 2-acetylpyridine S-methylisothiosemicarbazone (HL) of the formulae [Cu(HL)SO4(H2O)]·H2O (1), [Cu2(HL)2(μ-SO4)2]·2H2O (2) and [Cu(HL)(NCS)(SCN)] (3), as well as the structure of the protonated ligand H2L+I. Complexes 1 and 2 were obtained from the reaction of aqueous/methanolic CuSO4·5H2O and ethanolic/methanolic H2L+I solutions, respectively. Complex 3 was synthesized by the reaction of methanolic solutions of Cu(ClO4)2·6H2O, the ligand and NH4SCN, with the addition of triethyl orthoformate. All three complexes have a slightly deformed square-pyramidal structure (τav = 0.15) with the tridentate NNN neutral ligand in the basal plane. In complexes 1 and 3 the apical position is occupied by the oxygen atom of the monodentate SO4 group, or the sulfur atom of the SCN group. Thanks to the hydrogen bonds, complex 3 may be thought of as having a pseudo-dimeric structure. In the authentic centrosymmetric dimer 2, the oxygen atoms of both SO4 groups occupy also the apical position of both coordination polyhedra, as well as an equatorial position. Complexes 1 and 3 have μeff values characteristic of magnetically isolated mononuclear Cu(II) complexes. In contrast to them, complex 2 has a μeff value of 1.57 BM, which is in agreement with its dinuclear structure. All the complexes, in addition to the X-ray analysis and magnetic measurements, were characterized by IR and UV–Vis spectroscopy and by thermal analysis.  相似文献   

17.
A new azohydrazone, 2-hydroxy-N′-2-hydroxy-5-(phenyldiazenyl)benzohydrazide (H3L) and its copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), cadmium(II), mercury(II), vanadyl(II), uranyl(II), iron(III), and ruthenium(III) complexes have been prepared and characterized by elemental and thermal analyses as well as spectroscopic techniques (1H-NMR, IR, UV-Vis, ESR), magnetic, and conductivity measurements. Spectral data showed a neutral bidentate, monobasic bidentate, monobasic tridentate, and dibasic tridentate bonding to metal ions via the carbonyl oxygen in ketonic or enolic form, azomethine nitrogen, and/or deprotonated phenolic hydroxyl oxygen. ESR spectra of solid vanadyl(II) complex (2), copper(II) complexes (3–5), and (7) and manganese(II) complex (10) at room temperature show isotropic spectra, while copper(II) complex (6) shows axial symmetry with covalent character. Biological results show that the ligand is biologically inactive but the complexes exhibit mild effect on Gram positive bacteria (Bacillus subtilis), some octahedral complexes exhibit moderate effect on Gram negative bacteria (Escherichia coli), and VO(II), Cd(II), UO(II), and Hg(II) complexes show higher effect on Fungus (Aspergillus niger). When compared to previous results, metal complexes of this hydrazone have a mild effect on microorganisms due to the presence of the azo group.  相似文献   

18.
The new Mannich bases bis(1,4-diphenylthiosemicarbazide methyl) phosphinic acid H3L1 and bis(1,4-diphenylsemicarbazide methyl) phosphinic acid H3L2 were synthesised from the condensation of phosphinic acid, formaldehyde with 1,4-diphenyl thiosemicarbazide and 1,4-diphenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formulae K2[CrIII(L n )Cl2], K3[MnII(L n )Cl2] and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Hg(II); n = 1, 2), are reported. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Co(II), Ni(II) and Cu(II) complexes and tetrahedral for the Zn(II) and Hg(II) complexes.  相似文献   

19.
A new series of oxovanadium(IV), chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), and copper(II) complexes of the 3-hydrazino quinoxaline-2-one (HQO) were prepared and characterized. The ligand exhibits biambidenticity. It behaves as a bidentate ON donor in oxovanadium(IV), iron(III) and copper(II) complexes and as a bis bidentate ONNN donor in chromium(III), manganese(II), cobalt(II) and nickel(II) complexes. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, thermal, infrared, 1H NMR, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry was suggested for all the complexes. All the complexes show subnormal magnetic moments. The ligand, HQO, and its complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram −ve bacteria (Escherichia coli). The prepared metal complexes exhibited higher antimicrobial activities than the parent ligand.  相似文献   

20.
Summary Metal ion complexes of the thiosemicarbazone,4 N-cyclohexyl-2-[1-(2-pyridinyl)ethylidene]hydrazinecarbothioamide (HL4CH), have been prepared and spectrally characterised. Both the size of the cyclohexyl-group attached at4N as well as the4N hydrogen affect the stoichiometry and stereochemistry of the isolated complexes. The large cyclohexyl-group evidently causes the isolation of [Fe(HL4CH) (L4CH)H2O](ClO4) instead of the expected [Fe(L4CH)2]ClO4[Co(L4CH)Br] instead of [Co(HL4CH)Br2], and [Ni(L4CH)Br] instead of [Ni(HL4CH)2Br2]. The presence of the hydrogen at4N presumably hinders the deprotonation of HL4CH on complex formation since [Cu(HL4CH)Cl2] was isolated rather than [CuLCl], which occurs when the thiosemicarbazone has4N with two alkyl groups or incorporated in a ring. Further, although we prepared [Ni(L4CH)Br], complexes of this stoichiometry are planar and diamagnetle when4N does not have a hydrogen(s) attached to it rather than tetrahedral and paramagnetic as has been found for the present complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号