首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The influence of proton-donor properties and concentration of dopant nanoparticles introduced into Nafion and MF-4SС perfluorosulfonic cation-exchange membranes on the characteristics of cross-sensitive DP-sensors (sensors whose analytical signal is the Donnan potential) in alkaline solutions of sulfur-containing organic compounds were studied. The dopants were acid salts of heteropoly acids (HPAs) and hydrated silica SiO2 and zirconia ZrO2 surface-modified with sulfur-containing groups and an acid HPA salt. A correlation was revealed between the DP-sensor sensitivity to anions (and zwitter-ions) in alkaline solutions, size and proton-donor ability of the added particles, and diffusion permeability of hybrid membranes. Optimum compositions of membranes for arrays of cross-sensitive DP-sensors ensuring the simultaneous determination of cations and anions (and zwitter-ions) in the test solutions with an error of less than 18% were selected.  相似文献   

2.
The influence of modification of MF-4SC membranes with silica (or surface-hydrophobized silica) nanoparticles on their ionic conductivity and diffusion permeability as well as the response stability and sensitivity of the membrane-based DP-sensors for cations of amino acids containing hydrophobic fragment has been studied. The membranes modified with surface-hydrophobized silica exhibited the 2–5 times reduced relative error of determination of the hydrophobic amino acids as compared to the initial membranes.  相似文献   

3.
The results of studying characteristics of potentiometric DP-sensors (sensors with the Donnan potential as their analytical signal) are presented for alkaline solutions of a sulfur-containing amino acid with perfluorosulfonic cation exchange membranes subjected to thermal treatment and mechanical deformation at different relative humidity. Correlation between the distribution of sensitivity of DP-sensors towards cations and anions and diffusion permeability of membranes was found. A multisensor system including two DP-sensors based on membranes with optimized properties and a glass electrode for codetermination of potassium cations and amino acid anions and zwitterions in solutions at pH >7 are developed.  相似文献   

4.
The paper reports the immobilization of Ag+ cations on alumina and silica and AuCl 4 ? anions on amino silica and alumina. The method of inverse gas chromatography have demonstrated that Ag(I)-silica is selective for the separation of alkanes, alkenes, alkines, and arenes. The dependence of the capacitance of Ag(I) and Au(III) composites with regard to phenylacetylene (PHA) on the nature of the carriers, surface concentration, and technique of immobilizing ion metals has been considered. The isotherms of the adsorption of PHA from solutions in octane have been measured. It has been revealed that the capacitance of composites with regard to toward PHA prepared by the immobilization of ammoniates of silver nitrate on silicon dioxide is several times higher than for composites based on alumina with the same silver concentration and composites prepared by the immobilization of silver nitrate on silicon dioxide. The capacitance of the Au(III) composite based on alumina for PHA is significantly higher than for that based on aluminum oxide. The highest capacitance for PHA (0.83 and 0.88 molecules per metal ion) is observed for Ag(I) silica and the Au(III) alumina composite. In the visible region, the diffuse reflection spectra of amino silica Au(III) composites have a significant shift of the maximum of adsorption band along with the decrease in the concentration of immobilized anions of AuCl 4 ? , which evinces the formation of coordination bonds between free amin?propyl groups of the silica carrier and gold atom. The formation of these bonds prevents the adsorption of PHA on amino silica Au(III) composites with low gold concentrations.  相似文献   

5.
Hradski  Jasna  Bodor  R&#;bert  Mas&#;r  Mari&#;n 《Chromatographia》2014,77(21):1461-1468

Analysis of inorganic ions in cerebrospinal fluid (CSF) is used mainly in the diagnostics of central nervous system diseases, such as Alzheimer’s disease or multiple sclerosis. A new analytical method for fast determination of inorganic cations (ammonium, calcium, magnesium, sodium and potassium) and anions (chloride, sulfate, nitrite and nitrate) in CSF on an electrophoretic microchip was developed in this context. Zone electrophoresis (ZE) separations were performed on the microchip with coupled channels (CC) and contact conductivity detection. Two different propionate background electrolytes were used for the sequential determination of cations at pH 3.1 and anions at pH 4.3. ZE was used for the determination of cationic constituents while ZE–ZE approach was employed for the determination of chloride in the first separation channel on the CC microchip and other anionic micro-constituents in the second channel. LOD values were in the range of 0.003–0.012 mg L−1 and 0.019–0.047 mg L−1 for cations and anions, respectively. Repeatability of migration time was up to 1.2 % for both cations and anions. Repeatability of peak area ranged from 0.3 to 5.6 % for cations and from 0.6 to 6.0 % for anions. Recovery of both cations and anions was in the range 90–106 %. CSF samples were only diluted appropriately without other sample pretreatment prior to analysis. Developed sequential method is suitable for fast determination of the studied cations and anions in CSF with total analysis time <15 min.

  相似文献   

6.
The isotherms of sorption of ornithine, lysine, arginine, and histidine by an MK-40 membrane were obtained by the method of variable concentrations. The influence of the geometric parameters of side groups in the basic amino acids and pH on the degree of their absorption by the membrane was studied. The formation of doubly charged amino acid cations in the membrane phase when membranes in the H+ form were used was substantiated IR spectroscopically. The distribution coefficient was found to depend linearly on the size of amino acid side groups. The dependence of interphase surface tension at the membrane-solution interface on the degree of membrane filling was indicative of the formation of sorbate associates in the membrane phase.  相似文献   

7.
Electrodialysis of Amino Acid Solutions with Bipolar Ion-Exchange Membranes   总被引:1,自引:0,他引:1  
Bipolar membranes intended for the generation of hydrogen and hydroxyl ions in order to convert bipolar ions of amino acid into cations or anions migrating through cation- or anion-exchange membranes under a gradient of electric potential applied to the electromembrane system are studied. The transport processes occurring in glycine and sucrose solutions under electrodialysis with bipolar and unipolar ion-exchange membranes are examined. The proposed method permits the separation of a mixture of amino acids and sugars.  相似文献   

8.
Hybrid materials based on perfluorinated sulfo cation-exchange MF-4SC membrane and nanoparticles of cesium hydrogen phosphotungstate and silicotungstate heteropolyanions were obtained. These membranes with a gradual dopant distribution along the length were used to develop potentiometric sensors for determination of amino-containing organic cations in aqueous solutions at pH < 7. A relationship between the membrane transport characteristics and sensing properties was elucidated.  相似文献   

9.
We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome.  相似文献   

10.
A novel PVC‐based membrane sensor based on 2,6‐(p‐N,N‐dimethylaminophenyl)‐4‐phenylthiopyrylium perchlorate (DAPP) is described. The electrode exhibits a sub‐Nernstian response to 1‐(beta‐hydroxyethyl)‐2‐methyl‐5‐nitroimidazole (metronidazol) over a relatively wide concentration range (1.0 × 10?1 to 1.0 × 10?5 M) with a detection limit of 8.0 × 10?6 M. The best performance was obtained with the membrane containing 30% poly (vinyl chloride), 50% dibutyl phthalate, 7% DAPP and 13% oleic acid. It has a fast response time (< 30 s) and can be used for at least four weeks without any major deviation. The proposed sensor revealed very good selectivity for metronidazole over a wide variety of common cations, anions and amino acids and could be used in the pH range of 6.0–7.5. It was successfully used for direct determination of metronidazole in an oral synthetic antiprotozoal as an antibacterial agent, in metronidazole tablets, and metronidazole injections and metronidazole gels.  相似文献   

11.
In this article, optimization of BGE for simultaneous separation of inorganic ions, organic acids, and glutathione using dual C4D‐LIF detection in capillary electrophoresis is presented. The optimized BGE consisted of 30 mM 2‐[4‐(2‐hydroxyethyl)piperazin‐1‐yl]ethanesulfonic acid, 15 mM 2‐amino‐2‐hydroxymethyl‐propane‐1,3‐diol, and 2 mM 18‐crown‐6 at pH 7.2 and allowed simultaneous separation of ten inorganic anions and cations, three organic acids and glutathione in 20 min. The samples were injected hydrodynamically from both capillary ends using the double‐opposite end injection principle. Sensitive detection of anions, cations, and organic acids with micromolar LODs using C4D and simultaneously glutathione with nanomolar LODs using LIF was achieved in a single run. The developed BGE may be useful in analyses of biological samples containing analytes with differing concentrations of several orders of magnitude that is not possible with single detection mode.  相似文献   

12.
《Analytical letters》2012,45(8):1961-1967
Abstract

A reddish brown complex is formed between boron and curcumin in concentrated sulphuric acid and glacial acetic acid mixture (1:1). the coloured complex is highly selective and stable for about 3 hours and has the maximum absorbance at 545 nm. the sensitivity of the method is extremely high and the detection limit is 3 parts per billion based on 0.004 absorbance value. the interference of some of the important cations and anions relevant to silicon were studied and it is found that 100 fold excess of most of these cations and anions do not interfere in the determination of boron. the method is successfully employed for the determination of boron in silicon used in semiconductor devices. the results have been verified by standard addition method.  相似文献   

13.
The development of artificial receptors able to selectively recognize a target protein is of particular interest in separation, diagnostics, and therapeutics fields. Herein, we disclose a method to prepare biomimetic and functionalized protein imprints in biocompatible conditions avoiding any protein denaturation. For that purpose, a set of different hybrid silylated amino acid derivatives were synthesized and used without tetraethyl orthosilicate to prepare our molecularly imprinted polymers, allowing to reduce to a minimum of the silicon amount, in order to obtain imprints made almost entirely of amino acids to mimic paratope surfaces of antibodies. Such functional building blocks were polymerized on the surface of magnetic silica nanoparticles at pH 8.5 in ultrapure water in the presence of two globular proteins: cytochrome C or lysozyme. The resulting imprinted hybrid materials were evaluated for their adsorption capacity, specificity, and selectivity by quartz-crystal microbalance with dissipation and magnetic enzyme-linked immunosorbent assay (ELISA) assays. High imprinting factors of 8.7 were measured for these biomimetic hybrid materials (corresponding to approximately 4000 and 450 ng of protein per cm2 immobilized on molecularly imprinted polymers and non-imprinted polymer nanoparticles, respectively), representing a significant breakthrough in sol-gel-based molecular imprinting materials. Moreover, competition experiments performed by magnetic ELISA (mELISA) show very good specificity of our imprints at the usual concentrations of ELISA measurements.  相似文献   

14.
Five plastic membrane electrodes for the determination of dicyclomine hydrochloride (DcCl) were fabricated and fully characterized in terms of composition, life span, usable pH range, working concentration range and temperature. The membranes of these electrodes consist of dicyclominium-silicotungstate (Dc-ST), silicomolybdate (Dc-SM), phosphotungstate (Dc-PT), phosphomolybdate (Dc-PM) or tetraphenylborate (Dc-TPB) ion-associations dispersed in PVC matrix with dibutyl phthalate plasticizer. The electrodes showed near-Nernstian response over the concentration range of 4.0 × 10−6 to 1.0 × 10−2 M DcCl and applied to the potentiometric determination of dicyclominium ion in pharmaceutical preparations, serum, urine and milk in batch and flow injection (FI) conditions with average recoveries of 96.1-102.7% and relative standard deviation of 0.055-1.994%. The electrodes exhibit good selectivity for DcCl with respect to a large number of inorganic cations, organic cations, sugars and amino acids. The sensitivities of these electrodes are high enough to measure as low as 1.73 μg/ml of DcCl which permit the determination of the Ksp values of the ion-associates used. The proposed potentiometric methods offer the advantages of simplicity, accuracy, automation feasibility and applicability to turbid and colored sample solutions.  相似文献   

15.
Analysis of inorganic ions in cerebrospinal fluid (CSF) is used mainly in the diagnostics of central nervous system diseases, such as Alzheimer’s disease or multiple sclerosis. A new analytical method for fast determination of inorganic cations (ammonium, calcium, magnesium, sodium and potassium) and anions (chloride, sulfate, nitrite and nitrate) in CSF on an electrophoretic microchip was developed in this context. Zone electrophoresis (ZE) separations were performed on the microchip with coupled channels (CC) and contact conductivity detection. Two different propionate background electrolytes were used for the sequential determination of cations at pH 3.1 and anions at pH 4.3. ZE was used for the determination of cationic constituents while ZE–ZE approach was employed for the determination of chloride in the first separation channel on the CC microchip and other anionic micro-constituents in the second channel. LOD values were in the range of 0.003–0.012 mg L?1 and 0.019–0.047 mg L?1 for cations and anions, respectively. Repeatability of migration time was up to 1.2 % for both cations and anions. Repeatability of peak area ranged from 0.3 to 5.6 % for cations and from 0.6 to 6.0 % for anions. Recovery of both cations and anions was in the range 90–106 %. CSF samples were only diluted appropriately without other sample pretreatment prior to analysis. Developed sequential method is suitable for fast determination of the studied cations and anions in CSF with total analysis time <15 min.  相似文献   

16.
For the first time, effects of CuO nanoparticles concentration (from 1 to 24.2 wt%) in CuO/NaX nanocomposite and replacing various cations (Ag+, K+, Ca2+, and Mg2+) with Na+ ions in NaX zeolite on removal of uranium ions from drinking water are reported. The removal of uranium was performed under natural conditions of pH, laboratory temperature and the presence of competing cations and anions that are available in tap water of Isfahan city. Characterization of parent NaX zeolite and modified samples were investigated using X-ray fluorescence, X-ray powder diffraction patterns, scanning electron microscopy, and atomic absorption spectroscopy methods. Using Langmuir, Freundlich, and C-models, isotherms of equilibrium adsorption were studied. Results show the removal efficiency and distribution coefficient of NaX zeolite decrease in the presence of other competing anions and cations that exist in drinking water. But, modification of NaX zeolite with various cations and CuO nanoparticles might enhance the ability of X zeolite in removing uranium from drinking water.  相似文献   

17.
It is shown that, in silver hydrosols that are produced by the reduction of metal cations under the action of borohydride and do not contain electron-donor additives, the photoinduced reduction of Ag+ ions and photoinduced oxidation of nanoparticles occur at pH 9.0 and 4.0, respectively. The effect of ionic composition of sols on the direction of the photoinduced process makes it possible to assume that OH? anions reduce silver cations on the surface of nanosized nuclei.  相似文献   

18.
At current densities above the limiting diffusion currents in electromembrane systems, bipolar ions of amino acids react with protons or hydroxyl ions that form during irreversible dissociation of water molecules at membrane–solution interfaces, convert into cations or anions, and then, after a gradient of electric potential is imposed on the system, migrate through cation-selective or anion-selective membranes (assisted electromigration). This phenomenon makes it possible to effectively separate solutions containing bipolar ions and nonelectrolyte molecules using electrodialysis with alternate cation-exchange and anion-exchange membranes.  相似文献   

19.
A novel fibroin-modified electrode with charge recognition is reported. The characteristics of silk fibroin membranes have been exploited for analytical applications. The membrane, with an isoelectric point of pH 4.5, was applied to graphite and carbon-fiber electrodes. The modified electrode was negatively charged in solutions of pH>4.5, and so rejected anions and attracted cations. In solutions of pH<4.5 the electrode was positively charged, and so rejected cations and attracted anions. The pH-responsive charge recognition of the modified electrode was investigated for some neurocompounds. A fibroin carbon-fiber electrode was used for in-vivo determination of the concentration of the cationic neurotransmitter dopamine (DA).This revised version replaces the article published online on April 2005.  相似文献   

20.
《Analytical letters》2012,45(19):2251-2258
Abstract

The spectrophotometric determination of hydroxylamine, glycine and methionine has been investigated. The high molar absorptivity of the investigated amino acids or hydroxylamine-nitroprusside complexes at the optimum conditions indicates that concentrations of 10?4?10?3 M of these compounds can be determined spectrophotometrically with fair accuracy. The effect of pH was studied and the optimum pH was chosen to give the highest sensitivity. The validity of this method is supported by the constancy of the absorptivity of the investigated compounds and the statistical data of regression analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号