首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and fast method for preconcentration and determination of ultra trace amounts of lead(II), mercury(II) and cadmium(II) in water samples is presented. Lead, mercury and cadmium adsorbed quantitatively during passage of water samples (pH?=?7, flow rate?=?20 mL min?1) through octadecyl silica membrane disks modified with 5,5′-dithiobis(2-nitrobenzoic acid). The retained lead, mercury and cadmium are then stripped from the disk with a minimal amount of 1 M hydrochloric acid solution as eluent, and determined by atomic absorption spectrometry. The influence of flow rates of the eluent and sample solution, the amount of ligand, type and least amount of eluent, pH of sample, effect of other ions and breakthrough volume are determined. The breakthrough volume of the method is greater than 2000 mL for lead and greater than 1500 mL for mercury and cadmium, which results in an enrichment factor of 200 for lead and an enrichment factor of 150 for both mercury and cadmium. The limit of detection of the proposed method is 177, 2 and 13 ng l?1 for lead, mercury and cadmium, respectively.  相似文献   

2.
Farhadi K  Teimouri G 《Talanta》2005,65(4):925-929
A new simple and reliable method for rapid and selective extraction and determination of trace level of Pd(II) ion is developed. Palladium ions are adsorbed quantitatively during passage of aqueous samples through octadecyl silica membrane disks modified with thioridazine·HCl (TRH). The influence of flow rates of eluent and sample solution, amount of ligand, types and least amount of eluent, and pH of samples were studied. Almost all matrix elements were found to pass through the disk to drain. Break through volume and limit of detection of the membrane disks modified by 5 mg of TRH was found to be 1.0 l and 12 μg l−1, respectively. The retained Pd(II) ions are then stripped from the disk with a minimal amount of sulfite solution as eluent and subsequently measured by atomic absorption spectrometry. The proposed method permitted large enrichment factors of about 100 and higher. The method was applied to the recovery of Pd(II) ions from different industrial samples and waters.  相似文献   

3.
A simple and sensitive method is presented for solid phase extraction (SPE) and preconcentration of trace quantities of beryllium using octadecyl silica gel modifed with aurin tricarboxylic acid (aluminon). Beryllium is then determined by flame atomic absorption spectroscopy. Parameters affecting SPE such as pH, sample solution and eluent flow rate, type, concentration and volume of eluent, interfering ions and breakthrough volume, were investigated. Under optimal conditions, the beryllium ions were retained on the sorbent at pH 6–6.7, while 3.0 mL of 0.05 mol L?1 HNO3 is sufficient to elute the ions. The limit of detection (LOD) based on 3σ was 0.8 µg L?1 for 250 mL sample solution and 5 mL 0.05 mol L?1 HNO3 as eluent. The LOD can reach 0.1 µg L?1 for 1 L sample solution and 3 mL of 0.05 mol L?1 HNO3. The accuracy and precision (RSD %) of the method is >90% and <10%, respectively. The method was applied to the determination of beryllium in aqueous samples.  相似文献   

4.
碱熔样电感耦合等离子体发射光谱法测定锑矿石中锑   总被引:2,自引:0,他引:2  
建立了碱熔样电感耦合等离子体发射光谱法测定锑矿中总锑的方法。探讨了熔样时间、熔样温度、溶解液酸度及组成对测定结果的影响。以过氧化钠作为熔剂,于650℃熔样15 min,加入1.0 g/L酒石酸调节样品溶液的酸度以防止水解,用电感耦合等离子体发射光谱法测定锑的含量,方法线性范围为0.00~50.0 mg/L,检出限为50.0μg/g,8个样品独立测定结果的相对标准偏差均小于5%(n=11),标准样品测定结果与标准值基本吻合。该方法适用于锑矿中总锑的含量测定。  相似文献   

5.
A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L−1 HNO3. The preconcentration factor was 100 for a 100 mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 μg L−1. The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g−1 for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.  相似文献   

6.
A simultaneous preconcentration and separation method for determination of trace amount of dissolved Ag+, Pb2+ and Pd2+ ions by modified octadecyl silica membrane disks with DBzDA18C6 was developed. The adsorbed metal complexes were eluted from disk with 10?mL of 4?M KCl and determined by flame atomic absorption spectroscopy. Several parameters such as anion effect, pH of sample solution, type of eluent, amount of ligand, sample and elution flow rate were evaluated. The effect of diverse ions on preconcentration was also investigated. A precocentration factor of 110 can easily be achieved depending on the volume of the sample. For 100?mL of the solution the linear dynamic rang were found to be 30–1000, 140–6000, 60–900?μg?l?1 for Ag+, Pb2+ and Pd2+, respectively. Based on three standard deviation of the blank the detection limit was obtained as 1.8, 8.0 and 4.2?μg?L?1 for Ag+, Pb2+, Pd2+, respectively. The formation constants of Ag+ and Pb2+ ions with DBzDA18C6 at 25?°C were determined from the molar conductance–mole ratio data. This method was applied for the determination of Ag+, Pb2+ and Pd2+ in environmental water, tea and soil samples.  相似文献   

7.
The on-line column preconcentration technique with inductively coupled plasma optical emission spectroscopy (ICP–OES) has been developed using a cartridge filled with octadecyl silica modified by l-(2-pyridylazo) 2-naphtol (PAN). The aim of this method was to determine some rare earth elements (REEs) (Ce, Dy, La, Sm, and Y) and uranium in water samples. Sample solutions were passed through the C18-modified column. The adsorbed cations were subsequently eluted from the column and transferred into the plasma with nitric acid solution for simultaneous determination of them. Sample pH, amount of PAN as a complexing agent, sampling and eluting flowrates and concentration of the eluent were optimized. Detection limits based on three times of standard deviations of blank by 10 replicates were in the range of 11 ng l−1 for Dy to 69 ng l−1 for U. Sample throughput was 10 samples h−1. The proposed method was applied to determine REEs in natural water samples. Recoveries of the REEs from natural water samples were between 95 and 106% with percent relative standard deviation (%R.S.D.) of 1.0–7.9%.  相似文献   

8.
A simple method has been developed for rapid and selective extraction, preconcentration and determination of trace amounts of beryllium. The extraction is carried out by octadecyl silica cartridge, modified with quinalizarine as a chelating agent. The effect of different parameters, such as sample matrix, flowrates of sample solution and eluent, pH, type and least amount of eluent for elution of Be(+2) ions from cartridge, breakthrough volume and limit of detection, were evaluated. Also, the effects of various cationic and anionic interferences on percent recovery of Be(+2) were studied. Be(+2) was extracted from solution at pH 6-6.6 and was eluted from modified cartridge with 5 ml of 0.5 M HNO(3). Extraction efficiencies >99% were obtained by elution of the cartridges with minimal amount of eluent. A preconcentration factor of 200 and a detection limit of 200 ng per 1000 ml were obtained. The method was applied to the recovery and determination of Be(+2) in different water and alloy samples.  相似文献   

9.
An analytical method has been developed for the preconcentration of rare earth elements (REEs) in seawater for their determination by inductively coupled plasma optical emission spectrometry (ICP‐OES). An indigenously synthesized chelating resin was used for the preconcentration of (REEs) which was based on immobilization of fluorinated β‐diketone group on solid support styrene divinyl benzene. Sample solutions (adjusted to optimized pH) were passed through a polyethylene column packed with 250 mg of the resin. Experimental conditions consisting of pH, sample flow rate, sample volume and eluent concentration were optimized. The established method has been applied for the preconcentration of light, medium and heavy REEs in coastal sea water samples for their subsequent determination by (ICP‐OES). Percentage recoveries of La, Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb and Lu were ≥ 95%, a preconcentration factor of 200 times, and relative standard deviations < 5% were achieved.  相似文献   

10.
A new ionic liquid modified silica gel sorbent was prepared from the reaction of active silica gel with N-3-(-3-triethoxysilylepropyl)-3-methylimidazolium chloride ([(TESP)MIm]Cl). This sorbent was exploited as solid phase extractant for separation and preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). It was found that it can selectively adsorb Fe(Ш). Identification of the surface modification was performed on the basis of FT-IR. Experimental conditions for effective adsorption of trace Fe(Ш) were optimised using both batch and column procedures. At pH 3, Fe(Ш) could be quantitatively adsorbed and completely eluted by using 2?mL of 0.1?mol?L?1 of HCl. 150?mL of sample solution was adopted as the maximum sample volume and a high enrichment factor of 75 was obtained. Most common coexisting ions did not interfere with the separation and preconcentration of Fe(Ш) at optimal conditions. The maximum static adsorption capacity of the sorbent was 37.0?mg?g?1. The detection limit of the present method was 0.48?µg?L?1, and the relative standard deviation (R. S. D.) was lower than 1.7%. The method was successfully applied to the preconcentration of trace Fe(Ш) in biological and natural water samples with satisfactory results.  相似文献   

11.
A new functionalized nanometer mesoporous silica (MCM-41) using 2,4-dihydroxybenzaldehyde (4-OHsal) was applied as an effective sorbent for solid phase extraction (SPE) of beryllium ions from aqueous solution followed by inductively coupled plasma optical emission spectrometric detection (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ion were investigated in batch method. In order to perform the batch mode of SPE, known amount of sorbent was added to a test tube containing sample solution buffered at pH 7.2. After manual shaking and centrifugation the aqueous phase was decanted and beryllium was desorbed by adding 1.0 mL of 1.0 mol L?1 HNO3 to the sedimented sorbent. The sorbent was separated by centrifugation and the concentration of beryllium in the supernatant was determined by ICP OES. The maximum sorption capacity of the modified MCM-41 was found to be 34 mg g?1. The sorbent exhibited good stability, reusability and fast rate of equilibrium for sorption/desorption of beryllium ions. The present method was used for preconcentration and determination of beryllium for water samples. Under optimal conditions, the limit of detection (LOD) obtained was 0.3 ng L?1. The accuracy of the procedure was evaluated by analysis of the certified reference material (NIST 1640).  相似文献   

12.
A highly selective, facile and reliable method for separation and preconcentration of the trace amounts of lead present in aqueous samples is introduced. By passing the solutions through an octadecyl silica membrane disk modified by a novel Schiff's base, Pb2+ ions are adsorbed quantitatively while almost all interfering ions pass through the disk. The retained lead(II) ions are then eluted from the disk surface by a minimal amount of organic eluents. The influences of pH, sample flow‐rates and interfering ions are also investigated. The proposed method permits an enrichment factor of about 500 or higher and a detection limit of 0.0065 ng mL?;1.  相似文献   

13.
A new method has been developed for the determination of trace rare earth elements (REEs) in water samples based on preconcentration with a microcolumn packed with multiwalled carbon nanotubes (MWNTs) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. The studied REEs ions can be quantitatively retained by MWNTs when the pH exceed 3.0, and then eluted completely with 1.0 mol L−1 HNO3. The detection limits of this method for REEs was between 3 and 57 ng L−1, and the relative standard deviations (RSDs) for the determination of REEs at 10 ng mL−1 level were found to be less than 6% when processing 100 mL sample solution. The method was validated using a certified reference material, and has been successfully applied for the determination of trace rare earth elements in lake water and synthetic seawater with satisfactory results.  相似文献   

14.
A novel solid phase extraction technique for determination of total iron in environmental water samples was developed. The method is based on sorption of Fe(III) ions on octadecyl silica membrane disk modified with a new synthetic ligand dimethyl(E)‐2‐(2‐methoxyphenoxy)‐2‐butenedioate (I). Iron(III) is quantitatively retained on the disk in the pH range of 3–7 at a flow rate of 1–7 mL min−1. The Fe(III) eluted with 10 mL of 0.01 M EDTA and than was measured by flame atomic absorption spectrometry (FAAS) at 248.3 nm. The maximum capacity disk modified by 7 mg of ligand was found to be 197 ± 2 μg of iron(III). The breakthrough volume was greater than 2000 mL. The iron(III) was completely recovered (> 99%) from water with a preconcentration factor of more than 200. The limit of detection of the proposed method was 1.00 ng mL−1. The various cationic and anionic interferences had no effect on the recovery of iron(III) from the binary mixtures. The proposed method was successfully applied to determination of total iron from three different water samples.  相似文献   

15.
A modified SBA-15 mesoporous silica was developed, as an adsorbent, for the removal of Cr(VI) ions from natural-water samples. The effects of experimental parameters, including pH of solution, sample and eluent flow rate, the eluent composition, the eluent volume, and the effect of coexisting ions on the separation and determination of Cr(VI), were investigated. It was shown that Cr(VI) was selectively adsorbed from aqueous solution at pH 3, but Cr(III) could be adsorbed from solution at alkaline pH range. The retained Cr(VI) was eluted with 0.5?mol?L?1 KCl solution in 0.1?mol?L?1 Na2CO3 subsequently. Under the optimum conditions, the modified mesoporous silica (py-SBA-15) with a high pore diameter exhibited an adsorption capacity of 136?mg?g?1 and a lower limit of detection than 2.3?µg?L?1 by using diphenylcarbazide as a chromophorous reagent for the determination of Cr(VI) ions. A preconcentration factor as high as 200 was calculated for Cr(VI). The loaded py-SBA-15 can be reactivated with recovery of more than 98.5% over at least eight cycles. The relative standard deviation (RSD) for Cr(VI) ion recovery was less than 1.8%. Validation of the outlined method was performed by analysing a certified reference material (BCR 544). The proposed method was applied to determine Cr(VI) value in natural and waste water samples successfully.  相似文献   

16.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   

17.
《Analytical letters》2012,45(11):2105-2115
Abstract

Systematic investigations were carried out into the sorption of rare earth elements (REEs) on carbon nonofibers (CNFs) by inductively coupled plasma mass spectrometry (ICP‐MS). The experimental parameters for preconcentration of REEs, such as pH, sample flow rate and volume, eluent concentration, and interfering ions on preconcentration of REEs have been examined in detail. The studied metal ions can be adsorbed quantitatively on CNFs in a pH range from 2.0 to 5.0, and then eluted completely with 0.5 mol l?1 HNO3. Based on the above facts, a novel method using a microcolumn packed with carbon nanofibers as an adsorption material was developed for the separation and preconcentration of REEs prior to their determination by ICP‐MS. The proposed method has been successfully applied to the determination of light (La), medium (Eu and Gd) and heavy (Yb) rare earth elements in real sample with the recovery more than 90%. In order to validate this method, two certified reference materials of tea leaves (GBW 07605) and mussel (GBW 08571) were analyzed, and the determined values are in good agreement with the certified values.  相似文献   

18.
A simple and highly selective method was developed for the routine determination of trace or ultratrace amounts of gold and palladium in geological and metallurgical samples. The method uses flow injection on-line preconcentration and separation with determination by flame atomic absorption spectrometry. Au and Pd in the sample are adsorbed on a 2-mercaptopyrimidine chemically modified silica gel (MPMSG) packed microcolumn in a 0.50M HCl medium and then eluted with 0.5 or 1.0% thiourea solution. The eluates are introduced into the flame atomic absorption spectrometer directly. With the use of a 0.85 mL microcolumn (about 0.14 g MPMSG packed), the present system tolerated concentrations of common base metal ions up to 25.0 mg/mL and concentrations of anions up to 100.0 mg/mL when Au(III) at 0.100 microg/mL and Pd(II) at 0.200 microg/mL were preconcentrated for 60 s with a sample flow rate of 5.0 mL/min. The limits of detection were 3.1 ng/mL for Au(III) and 6.1 ng/mL for Pd(II) with relative standard deviations of < or = 2.5%. The analytical results obtained by the proposed method for geological and metallurgical samples were in good agreement with the certified values.  相似文献   

19.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP–AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP–AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min–1 and sequentially eluted directly into the ICP–AES with 3 mol L–1 HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL–1 level in the eluate is acceptable – less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g–1 and a capacity of approximately 5 mg g–1 for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L–1) in different water samples.  相似文献   

20.
A simple and selective method for rapid and efficient concentration and determination of μg l−1 levels of Au(III) ions in aqueous solution using octadecyl silica membrane disks modified by pentathia-15-crown-5 and flame atomic absorption spectrometry is presented. The influence of flow rates of eluent and sample solution, amount of ligand, types and least amount of eluent for elution of Au from disks were investigated. Break through volume and limit of detection of the membrane disks modified by 5 mg of the thiacrown ether was found to be 2.0 l and 1.0 μg l−1, respectively. The effects of various cationic interferences on percent recovery of gold were studied. The method was successfully applied for the determinations of gold in some pharmaceutical samples and for the recovery of trace Au3+ ions from synthetic and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号