首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work the research results on the sol–gel synthesis and structure of silica nanocomposites, containing carrageenan and their application as carriers for cell immobilization were described. The samples were prepared at room temperature by replacing different quantity of the inorganic precursor with κ-carrageenan. For studying the structure of the synthesized hybrids the following methods were used: FT-IR, XRD, BET-Analysis, SEM, AFM and Roughness Analysis. The influence of the type of silicon precursors, nature and quantity of organic component on the structure, surface area, design and size of nanostructures was established. The possibility of application of the synthesized biocatalysts in an enzyme degradation process of the toxic, carcinogenic and mutagenic substances benzonitrile, fumaronitrile, o-, m-, and p-tolunitriles was investigated at batch experiments. A two-step biodegradation process in a column bioreactor of fumaronitrile was followed. After operation of the system for 8 h at a flow rate 45 mL h?1 and at 60 °C, the overall conversion was 89%, showing a good stability of the developed process.  相似文献   

2.
Spherical silica particles doped with iron oxide have been synthesized via base-catalyzed one-pot sol?Cgel process using tetraethoxysilane (TEOS) and iron(III) ethoxide (ITE) as co-precursors. In the modified St?ber process adopted, depending on the concentration of ITE in the starting composition, materials of various morphologies were observed under a scanning electron microscope and an atomic force microscope. The presence of ITE significantly affected the formation process of particulate silica; the spherical particles were formed accompanied by the co-presence of irregular-shaped finer aggregates. The fraction of the aggregates with rough surfaces increased with an increase of the ITE content in the reaction mixture. Both the spherical particles and irregular-shaped aggregates contained iron hydroxide and they exhibited paramagnetic behavior. The chemical composition and physicochemical properties of the materials were determined using various complementary spectroscopic methods.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - Imbalance of the iron level in the body causes several diseases. In particular, the low level of iron, during pregnancy, is responsible for the iron...  相似文献   

4.
Multifunctional, water and oil repellent and antimicrobial finishes for cotton fibres were prepared from a commercially available fluoroalkylfunctional water-born siloxane (FAS) (Degussa), nanosized silver (Ag) (CHT) and a reactive organic–inorganic binder (RB) (CHT). Two different application procedures were used: firstly, one stage treatment of cotton fabric samples by FAS sol (i), as well as by a sol mixture constituted from all three precursors (Ag–RB–FAS, procedure 1S) (ii), and secondly, two stage treatment of cotton by Ag–RB sol and than by FAS sol (Ag–RB + FAS, procedure 2S) (iii). The hydrophobic and oleophobic properties of cotton fabrics treated by procedures (i)–(iii) before and after consecutive (up to 10) washings were established from contact angle measurements (water, diiodomethane and n-hexadecane) and correlated with infrared and XPS spectroscopic measurements. The results revealed that even after 10 washing cycles cotton treated with Ag–RB + FAS (2S) retained an oleophobicity similar to that of the FAS treated cotton, while the Ag–RB–FAS (1S) cotton fibres exhibited a loss of oleophobicity already after the second washing, even though fluorine and C–F vibrational bands were detected in the corresponding XPS and IR spectra. The antibacterial activity of cotton treated by procedures (i)–(iii) was tested by its reduction of the bacteria Escherichia coli and Staphylococcus aureus following the AATCC 100-1999 standard method and EN ISO 20743:2007 transfer method. The reduction in growth of both bacteria was nearly complete for the unwashed Ag–RB and Ag–RB–FAS (S1), but for the unwashed Ag–RB + FAS (S2) treated cotton no reduction of S. aureus and 43.5 ± 6.9% reduction of E. coli was noted. After the first washing, the latter two finishes exhibited nearly a complete reduction of E. coli but for the Ag–RB treated cotton the reduction dropped to 88.9 ± 3.4. None of the finishes retained antibacterial properties after 10 repetitive washings. The beneficial and long-lasting low surface energy effect of FAS finishes in the absence of Ag nanoparticles, which led to the “passive” antibacterial properties of FAS treated cotton fabrics, was established by applying the EN ISO 20743:2007 transfer method. The results revealed a reduction in bacteria of about 21.9 ± 5.7% (FAS), 13.1 ± 4.8% (Ag–RB–FAS (S1)) and 41.5 ± 3.7% (Ag–Rb + FAS (S2)), while no reduction of the growth of bacteria was observed for cotton treated with Ag nanoparticles after 10 repetitive washings. The physical properties (bending rigidity, breaking strength, air permeability) of finished cotton samples were determined, and showed increased fabric softness and flexibility as compared to the Ag–RB treated cotton, but a slight decrease of breaking strength in the warp and weft directions, while air permeability decreased for all type of finishes.  相似文献   

5.
A comparative study on the physical and optical properties of silica nanoparticles prepared by sol–gel has been carried out. Post-modification of as-synthesized silica nanoparticles produced organo-functionalized silica nanoparticles slightly increased in size (~20%) and relatively high aggregation. However, in situ method produced sixfold bigger functionalized particles with good dispersion and less aggregation. Higher organic content was observed for in situ modified nanosilica, leading to a higher surface hydrophobicity that improved compatibility and dispersion in preparation of silica-polymer nanocomposite. Furthermore, in situ and post-modified nanosilica demonstrated a distinct optical activity, photoluminescence and UV compared to the unmodified nanoparticles.  相似文献   

6.
7.
The purpose of the present work is the sol–gel synthesis, structure characterization and potential application of hybrid biomaterials based on silica precursor (MTES) and natural polymers such as gelatin or pectin. The structure formation in the biomaterials was investigated by XRD, FTIR, BET and AFM. The results showed that all studied hybrid biomaterials have an amorphous structure. The FT-IR spectra of the obtained materials with MTES showed chemical bonds at 2,975, 1,255, 880 and 690 cm−1 due to the presence of Si–O–R (CH3 and C2H5) and Si–C bonds. In the samples synthesized with TEOS the inorganic and organic components interact by hydrogen bonding, Van der Waals or electrostatic forces. Surface area of investigated samples decreases with increasing of the natural polymers content. The structure evolution was studied by AFM and roughness analysis. Depending on the chemical composition a different design and size of particles and their aggregates on the surface structure were established. The hybrid biomaterials were used for immobilization of bacterial cells and applied in the biodegradation of the toxic compound 4-chlorobutyronitrile, possible constituent of waste water effluents in a laboratory glass bioreactor. Optimization of the process at different temperatures was carried out.  相似文献   

8.
We have investigated the steady-shear and viscoelastic properties of composite dispersions of cellulose nanofibrils (CNFs) with medium or high charge density and two different nanoclays, viz. rod-like sepiolite or plate-like bentonite. Aqueous dispersions of CNFs with medium charge density displayed significantly lower steady-state viscosity and storage modulus but higher gelation threshold compared with CNFs with high charge density. Dynamic light scattering (DLS) results showed that the apparent hydrodynamic radius of bentonite particles increased when CNFs were added, implying that CNFs adsorbed onto the amphoteric edges of the plate-like bentonite particles. The sepiolite network in CNF–sepiolite dispersions was relatively unaffected by addition of small amounts of CNFs, and DLS showed that the hydrodynamic radius of sepiolite did not change when CNFs were added. Addition of CNFs at concentrations above the gelation threshold resulted in drastic decrease of the steady-shear viscosity of the sepiolite dispersion, suggesting that the sepiolite network disintegrates and the rod-like clay particles are aligned also at low shear rate. The relative change in the rheological properties of the clay-based dispersions was always greater on addition of CNFs with high compared with medium charge density. This study provides insight into how the rheology of CNF–nanoclay dispersions depends on both the nanoclay morphology and the interactions between the nanoclay and nanocellulose particles, being of relevance to processing of nanocellulose–clay composites.  相似文献   

9.
Porous monolithic gels based on silica with pore size from 16 nm to 3–5 μm have been synthesized using sol–gel technology. Parameters of porous structure are determined by the components molar ratio in the reaction mixture. The reduction processes of silver ions by formamide in the synthesized porous gel were studied. It has been shown that at the initial stage of the reaction, silver particles with size up to 10 nm are formed in the absence of any stabilizers. The composites Ag/SiO2 were synthesized by means of the threefold impregnation of porous monoliths using the solution of silver nitrate in the mixture of methanol and formamide. Their catalytic activity in the CO oxidation was studied. It was discovered that after activation in oxygen and hydrogen the samples display a low temperature activity, which depends on the number of Si–O-nonbridging oxygen groups on the surface of silica porous monoliths.  相似文献   

10.
Calcium titanium phosphate (CTP) was prepared by the sol–gel route in order to prepare suitable coatings. This work addresses the question of how to prepare stable CTP sols. Their rheological properties as a function of process parameters like solid loading and water content are investigated. It was found that an increased solid loading as well as an increased water content lead to an increased initial viscosity as well as a more pronounced ageing induced viscosity rise. In addition, the thermal behavior of the resulting xerogels was analyzed. Furthermore, we studied the ion release behavior of the xerogels when brought in contact with water. Results suggest that calcium titanium phosphate shows a diffusion controlled ion release mode with a preferential release of Ca.  相似文献   

11.
This paper reports a facile means to gradually tailor refractive index from an ultra-low-n of 1.10–1.45 based on hollow silica nanospheres hybridized with acid-catalyzed silica. The influences of the hybridization on refractive index, thin-film uniformity, and roughness were systematically investigated. The single-layered antireflection (AR) coatings and the three-layered AR coatings were prepared using the hybridized thin films as building blocks. The former showed the near-perfect transmittance and reflectance, 99.16 and 0.42 %, respectively, at a single wavelength of 600 nm, while the average transmittance (T ave) and reflectance (R ave) from the near ultraviolet (UV) to the visible region (300–800 nm) were moderate; the latter demonstrated an excellent AR capability in broadband that T ave reaches 97.29 %, much higher than that of the single-layered AR coating, 95.86 %. More interestingly, the three-layered AR coating showed an average transmittance of 97.94 % in the near-UV wavelength range from 345 to 400 nm and it was 6.77 % higher than that of bare glass. Moreover, the three-layered AR coatings had the less degradation in transmission and surface morphology after the highly-accelerated temperature and humidity stress tests, and the wet abrasion scrub tests. The findings imply that both good optical performance and durability are likely to be achieved using the sol–gel derived multilayered AR coatings.  相似文献   

12.
A Cd(II)-imprinted thiocyanato-functionalized silica gel adsorbent with high adsorption capacity was prepared by surface imprinting technique combined with sol–gel process for the selective adsorption of Cd(II) ion in aqueous solution, and was characterized by Fourier-transform infrared spectroscopy, nitrogen gas sorption and thermogravimetric analysis. The influences of different conditions (such as the pH of solutions, the contact time and the initial concentrations of Cd(II) ions) on the adsorption capacity of Cd(II) were investigated. The optimum pH of adsorption was in the range of 4–8.5. The adsorption equilibrium could be reached in 20 min. The relatively selectivity coefficients of the imprinted silica were higher than those of the non-imprinted adsorbents. Ho’s pseudo-second-order model well described the kinetics of the adsorption reaction. The adsorption process of metals followed Redlich–Peterson isotherm model, and the experimental value of maximum adsorption capacity for Cd(II) was 72.8 mg·g?1. The positive value of ΔH o suggested endothermic nature of Cd(II) adsorption on the imprinted silica adsorbent. Increase in entropy of adsorption reaction was shown by the positive value of ΔS o and the negative value of ΔG o indicating that the adsorption was spontaneous in nature.  相似文献   

13.
Lithium aluminum silicate powders in the form of β-spodumene were synthesized through sol–gel technique by mixing boehmite sol, silica sol and lithium salt. The gel and oxide powders were characterized by thermogravimetry, differential thermal analysis (DTA), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy. DTA, XRD and FTIR results confirmed that crystallization of β-spodumene took place at about 800 °C. The tiny crystallites with average size less than 1 μm appeared when the gel powders were sintered at 800 °C. A substantial increase of the crystal grain size was observed with increasing sintering temperatures.  相似文献   

14.
15.
Sodium and lithium cobaltates are important materials for thermoelectric and battery applications due to their large thermoelectric power and ability to (de-) intercalate the alkali metal. For these applications, phase pure materials with controlled microstructure are required. We report on the sol?Cgel synthesis of sodium- and lithium-based materials by using acetate precursors. The produced Na2/3CoO2, Li(Ni1/3Mn1/3Co1/3)O2, and Li(Ni1/2Co1/2)O2 powders are phase pure with grain sizes below 1???m. X-ray diffraction and energy-dispersive spectral analyses show that the cation stoichiometry is preserved in the lithium-based compounds. Despite the low temperatures, the sodium content is reduced by 1/3 as compared to the initial value. Chemical phases of the investigated powders are formed in the sol?Cgel route at temperatures typically 100?C200?K lower than those used in the conventional solid-state synthesis of these materials. The suggested sol?Cgel synthesis is a low temperature process suited for production of phase pure and homogeneous materials with volatile cations.  相似文献   

16.
This study aimed to investigate synthesis and adsorption behavior of silica nanoparticles onto polyvinylpyrrolidone (PVP)-functionalized poly(methyl methacrylate) under various conditions such as methanol/water ratio, ammonium hydroxide concentration, polymer contents, tetraethylorthosilicate contents, and total volume of solvent via sol–gel method. First, the copolymerization of methyl acrylate as a comonomer and 1-dodecanethiol as a chain transfer agent increased the thermal stability of the product; however, the uniformity of the PMMA particles decreased because of the chain transfer reaction. Second, the adsorption behavior and size of silica nanoparticles could be controlled by adjusting the silica synthesis conditions. The adsorbed silica particle size was greatly influenced by the ammonium hydroxide concentration and the addition of water further enhanced the size increase. However, increasing the water content reduced the packing efficiency of the adsorbed silica particles. Increasing the PVP-functionalized PMMA content at a fixed TEOS content linearly decreased the silica particle size. But TEOS concentration did not significantly affect the silica particle size. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 662–672  相似文献   

17.
Sol–gel silica hybrid coatings from acid and base catalyzed sols were examined. The sol precursors were tetraethyl orthosilicate (TEOS) and methyltriethoxysilane (MTES). It is generally accepted that the type of catalyst has a significant impact on the micro-structure of the resulting polysilicates. Weakly branched polymers are formed in acid catalyzed sols and highly branched, compact, particle like polymers are formed in base catalyzed sols. The mechanical and chemical properties of sol–gel derived silica coatings from acid and base catalyzed sols were studied as a function of the heat treatment temperature and time. Hardness and elastic modulus were measured by micro indentation measurements. The chemical composition of both types of coatings was characterized by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR).  相似文献   

18.
A novel processing technique based on sol–gel drop generation method has been developed to prepare fine zirconia minispheres for use as grinding media. Zirconium oxalate gel formation from the prepared sol was obtained in proper synthesis condition using Zirconium oxy-chloride octahydrate(ZrOCl2·8H2O) as starting material. The transparent oxalate gel was then added dropwise into the setting solution for the formation minispheres. To obtain the required fluidity and viscosity a suitable binder was mixed to the sol and stabilizing agent of required mol% was added to stabilize the phase formation. The addition of stabilizing agent transformation toughened the minispheres, with a complete retention of the tetragonal phase in the final product sintered at 1500 °C. Thermogravimetric analysis indicated the removal of most of the volatiles by 600 °C. Density and Crystallite size were found to be increasing linearly with sintering temperature. The phase identification, density variation, chemical decomposition, functional group specification and microstructural features for the dried and sintered final product were studied.  相似文献   

19.
20.
Silica packed epoxy networks are prepared in two steps via in situ, solvent free sol–gel processing of tetraethoxysilane in liquid epoxy monomer and curing the mixture with a flexible diamine afterwards. The influence of filler content and processing conditions on the mechanical properties and the fracture behavior is studied by means of the static mechanical analysis and AFM characterization of the pristine and the fractured polymer surfaces, and a mechanism to enhance polymer strength and toughness is proposed. The in–situ evolution and packing of silica nanostructures into epoxy networks influences the overall morphology and performance of polymers under high stress. It is found that smaller silica domains distributed at the molecular level cause efficient crack distribution by absorbing energy and thus improve the strength and toughness of silica packed epoxy polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号